Research progress of UbiA membrane-bound aromatic prenyltransferases in plants
-
摘要:
UbiA膜结合型芳香族异戊烯基转移酶(Prenyltransferases,PT)可催化异戊烯基单元转移到芳香族母核上形成C-C(或C-O)键,在植物中参与合成重要的代谢产物,如泛醌、质体醌、叶绿素、生育酚等。植物中多种具有异戊烯基的芳香族次生代谢物也是该类酶作用的产物。异戊烯基的引入增加了天然产物结构多样性和生物活性。本文介绍了植物中UbiA家族的基本类型,归纳了57个已鉴定功能的与次生代谢物(类黄酮、香豆素、二苯乙烯等)合成相关的UbiA PTs底物选择性、催化特点及其与初生代谢相关PTs的系统发育关系,并对异戊烯基转移酶基因的挖掘策略,以及利用微生物代谢工程定向合成活性异戊烯基化合物的应用前景进行了展望。
Abstract:UbiA membrane-bound aromatic prenyltransferases (UbiA PTs) catalyze the transfer of prenyl moieties to aromatic acceptor molecules to form C-C or C-O bonds, and participate in the biosynthesis of important plant chemicals, including ubiquinone, plastoquinone, chlorophyll, and tocopherol. A variety of aromatic secondary metabolites with prenyl groups in plants are also products of this class of enzyme. The introduction of prenyl groups increases the structural diversity and biological activity of natural products. In this paper, we introduce the basic types of UbiA families in plants, summarize the substrate selectivity and catalytic characteristics of 57 UbiA PTs related to biosynthesis of secondary metabolites (flavonoids, coumarins, stilbenes), and discuss their phylogenetic relationship with primary metabolism-related PTs. We also discuss the exploration strategies of prenyltransferase genes and the application prospects of targeted synthesis of active prenylated compounds by microbial metabolic engineering.
-
Keywords:
- Prenyltransferases /
- Primary metabolism /
- Secondary metabolism /
- Biosynthesis
-
在全球气候变化大背景下,极端天气事件频发、大气环流与水碳循环格局变化等导致的干旱强度、频率和持续时间不断增加,进而造成全球范围内森林大面积衰退、死亡事件逐年激增,植物对干旱胁迫的响应与适应已经成为植物生理生态学研究的热点[1, 2]。我国是干旱灾害发生频率较高、影响也较严重的国家之一,尤其是我国四大生态脆弱区之一的塔里木盆地,降水稀少,地表水匮乏,地下水成为荒漠植被赖以生存的重要水分来源。近年来随着全球变暖及区域水资源的过度开采,地下水埋深(GWD)持续降低,直接影响着植物水分和养分吸收、供应及各种生理生化代谢过程,威胁荒漠植被的生存发展与区域生态安全[3-5]。
极端干旱荒漠生境中,植物体内活性氧(ROS)代谢的动态平衡被打破[6],生物膜结构与功能被破坏,植物积累大量渗透调节物质并提高抗氧化酶活性,借此来稳定原生质胶体和生物膜以及组织内的代谢过程,以应对长期干旱缺水的环境[7-10]。Wu等[11]研究表明,随GWD下降,黎明前的梭梭(Haloxylon ammodendron (C. A. Mey.) Bunge)叶片水势和碳同化作用显著降低。干旱胁迫显著降低大山樱(Prunus sargentii Rehder)的叶水势和蒸腾作用,而日本落叶松(Larix kaempferi (Lamb.) Carr.)变化不明显,表现出更大的抗性和弹性[12]。沙芥(Pugionium cornutum (L.) Gaertn.)和斧形沙芥(P. dolabratum Maxim.)叶中丙二醛(MDA)含量随干旱胁迫程度加剧呈升高趋势,过氧化物酶(POD)活性先升高后降低,超氧化物歧化酶(SOD)活性先降低后升高[13]。郭艳阳等[14]研究发现玉米(Zea mays L.)叶片MDA含量随水分胁迫的加剧持续增加,SOD、POD活性先升高后降低。
胡杨(Populus euphratica Oliv.)为杨柳科杨属植物,是荒漠河岸林的建群种和荒漠地区特有的珍贵树种[15]。胡杨具有典型的异形叶性,在幼苗、幼树和成年树的下部着生条形或披针形叶,在成年树中部开始出现过渡形叶如卵形或肾形叶,而成年树上部则着生成熟的锯齿卵圆形或锯齿阔卵形叶[16, 17]。生长在河岸沙坡上的同龄树,其条形叶明显少于河岸低地[18];具有叶齿的叶片在干旱胁迫条件下存在明显优势[19],且锯齿叶趋于旱生性结构[20],对干旱环境的适应能力更强[21, 22]。因此,随着地下水位的下降,可能出现条形叶逐渐减少以至消失,而锯齿阔卵形叶逐渐占据树冠上层空间的现象。前人对胡杨异形叶光合、水分生理及其相关基因开展了较多研究[23-25],但关于异形叶渗透调节与保护酶对GWD的响应格局及其适应策略鲜见报道。
本研究以塔里木极端干旱区的胡杨为材料,在测定地下水埋深梯度下3种典型异形叶(条形、卵形、锯齿阔卵形)的水分生理与抗逆物质的基础上,试图回答以下问题:(1)3种异形叶水力性状及抗逆生理物质沿GWD梯度的变异格局及差异如何?(2)3种异形叶应对荒漠环境的生理适应策略是否存在差异?(3)从抗逆生理的角度上,如何解释随GWD的增加,条形叶逐渐消失、锯齿阔卵形叶占据树冠空间?研究结果旨在揭示胡杨3种异形叶适应极端干旱区日益旱化荒漠环境的生理生态对策,阐明叶形变化的原因,为极端干旱区胡杨林的保育复壮及荒漠河岸林生态恢复提供科学依据。
1. 材料与方法
1.1 研究区概况
研究区位于新疆塔里木河上游,海拔800~1 300 m,年均太阳辐射133.7~146.3 kcal/cm2,年均日照2 556.3~3 031.2 h,年均气温10.6 ℃,年均日较差15 ℃,年平均≥10 ℃稳定积温达3953 ℃,无霜期190~251 d,年均降水量40.1~82.5 mm,年均蒸发量1 876.6~2 558.9 mm,年平均风速2.3 m/s,多为西北风或西风。2022年生长季于阿瓦提县丰收三场、塔河源、南口镇、沙雅县天然胡杨林内,垂直河岸设置50 m宽的样带,根据植物群落结构组成、胡杨密度、长势情况设置3~5个50 m×50 m的调查样方。采用机械打井,建立地下水位观测井(PVC管,10 m),用于长期监测GWD的变化。GWD采用电导法测定[26],各样地GWD见表1。
表 1 样地概况Table 1. Characteristics of study plots样地
Site经纬度
Longitude and latitude地下水埋深
GWD / m密度
Density / ind./hm2平均树龄
Average age / a平均树高
Average height / m平均胸径
Average DBH / cm塔河源 40°30′04″N, 80°58′27″E 1.0~1.5 290.5 80.2 6.4 26.3 南口镇 40°26′29″N, 81°09′10″E 2.3~2.7 171.3 69.1 8.5 22.6 阿瓦提 40°19′44″N, 80°23′35″E 4.0~4.5 268.1 64.6 7.9 21.1 沙雅县 40°41′19″N, 81°59′43″E 7.5~8.0 120.2 110.6 7.8 36.4 1.2 样品采集
2022年7-8月,在塔河源、南口镇、阿瓦提、沙雅县4个GWD样地,分别随机选择健康、无病虫害、叶形分化明显的成熟胡杨树10株进行采样,在树冠上、中、下层3个高度四周方向剪下生长良好的当年生小枝(末端无分枝),每株采集条形、卵形、锯齿阔卵形叶(图1)各3~5片,用湿润纱布包好,装入自封袋,置于冷藏箱中带回实验室,一部分用于测定叶片水分状况,另一部分放入−80 ℃冰箱保存。
1.3 测定指标与方法
1.3.1 叶水势测定
野外采用PSYPRO露点水势仪(Wescor,美国)测定叶片水势(Ψleaf),选取成熟健康的胡杨3种异形叶,将叶片中部置于叶室(L-51)中,拧紧L-51探测头,并用密封条将叶室周围空隙密封,平衡30 min后进行测定[27],每株每叶形重复3次。
1.3.2 水分生理参数测定
用精度为0.000 1 g的电子天平称量叶片鲜重(Wf),每株每叶形重复3次,然后将叶片浸入蒸馏水中12 h以上,直至叶片吸水饱和,称量叶片饱水重(Wt),再将叶片放置于烘箱中105 ℃杀青30 min、80 ℃烘干至恒重,称量叶片干重(Wd),根据公式计算叶片相对含水量,RWC=(Wf−Wd)/(Wt−Wd)×100%,叶片水分饱和亏缺WSD=(Wt−Wf)/(Wt−Wd)×100%[24, 28]。
1.3.3 抗逆生理指标测定
将3种异形叶分别混合取样,各生理指标测定方法均参考《植物生理学实验指导》[29],所有测定重复3次。
1.3.3.1 渗透调节物质测定
游离脯氨酸(Pro)含量采用磺基水杨酸提取、酸性茚三酮法测定;可溶性糖(SS)含量采用硫酸-蒽酮比色法测定;可溶性蛋白(SP)含量采用考马斯亮蓝G-250染色法测定。
1.3.3.2 MDA含量及抗氧化酶活性测定
酶液提取:称取混样2.0 g,放入预先冰冻的研钵中,加入少量石英砂和0.05 mol/L pH值为7.8的磷酸缓冲液(PBS),冰浴研磨成匀浆,转移至50 mL容量瓶准确定容。定容后的溶液4 ℃、10 000 r/min离心15 min,上清液即提取液,用于MDA、SOD和POD测定。
MDA含量采用硫代巴比妥酸显色法测定, SOD活性采用氮兰四唑(NBT)光化还原法测定,以抑制NBT还原率50%为1个酶活单位(U),POD活性采用愈创木酚氧化法测定,以1 min内A470变化0.1为1个酶活单位(U)。
1.4 数据分析
使用Excel 2019软件对原始数据进行整理,运用SPSS统计软件对不同GWD同种叶形、同一GWD不同叶形的生理指标进行单因素方差分析(One-way ANOVA)与Duncan多重比较。对各生理指标之间的关系及其与GWD之间的关系进行Pearson相关分析,对3种异形叶生理指标沿GWD梯度的协变关系进行主成分分析(PCA)。利用Origin 2021及R 4.2.3软件进行绘图。
2. 结果与分析
2.1 胡杨异形叶水分生理参数沿GWD的变化
随着GWD的增加,胡杨异形叶水势日均值、RWC呈下降趋势(图2:A、B),WSD呈升高趋势(图2:C)。GWD在 7.5~8.0 m时,3种异形叶的水势日均值最低,与GWD 2.3~2.7 m时的同种叶形相比,条形、卵形、锯齿阔卵形叶分别下降了1.93、2.16、2.03倍。方差分析表明,不同GWD生境下的胡杨3种异形叶水势日均值差异显著(P<0.05),条形叶与卵形叶的RWC、WSD差异显著。同一GWD生境,GWD>3.0 m时条形叶水势日均值与其他两种叶形差异显著,WSD仅在GWD 4.0~4.5 m时3种叶形间有显著差异,表明随GWD增加,胡杨异形叶所受干旱胁迫的程度逐渐加剧,锯齿阔卵形叶维持叶片水分稳定的能力强于其他两种叶形。
图 2 异形叶水势、相对含水量、水分饱和亏缺对地下水埋深梯度的响应不同小写字母表示同一样地不同叶形间差异显著(P<0.05),不同大写字母表示同一叶形不同样地间差异显著(P<0.05);GWD:地下水埋深。下同。Figure 2. Response of water potential, relative water content, and water saturation deficit in heteromorphic leaves to GWDDifferent lowercase letters indicate significant differences among different leaf shapes in the same site (P<0.05), and different uppercase letters indicate significant differences among different sites in the same leaf (P<0.05); GWD: Groundwater depth. Same below.2.2 胡杨异形叶渗透调节物质含量沿GWD的变化
随GWD的增加,胡杨异形叶Pro、SS含量呈升高趋势(图3:A、B),SP含量呈下降趋势(图3:C)。GWD在 4.0~4.5 m时,3种异形叶的Pro含量均达最高值,与GWD在 1~1.5 m时的同种叶形相比,条形、卵形与锯齿阔卵形叶分别增加了1.83、3.90、2.80倍。方差分析表明,不同GWD生境下胡杨3种异形叶Pro、SS及SP含量的差异均达显著水平。同一GWD生境,条形叶与锯齿阔卵形叶的Pro、SS含量差异显著;除GWD 7.5~8.0 m外,不同生境3种叶形间的SP含量差异均达显著水平,且随GWD增加,锯齿阔卵形叶SP含量均显著高于其他两种叶形。这表明胡杨3种异形叶对GWD梯度的响应存在差异,其中锯齿阔卵形叶的SP含量受GWD变化的影响最大。
2.3 异形叶MDA含量及抗氧化酶活性沿GWD的变化
随GWD的增加,胡杨异形叶的MDA含量呈升高趋势(图4:A),SOD一直维持较高活性水平(图4:B),POD活性呈下降趋势(图4:C)。GWD在 4.0~4.5 m时,3种异形叶的MDA含量积累最多,且SOD活性达最高值。与GWD 为1~1.5 m时相比,GWD在 7.5~8.0 m时,条形叶、卵形叶的POD活性分别下降41.99%、79.84%。方差分析表明,不同GWD生境下胡杨3种异形叶的MDA含量、SOD及POD活性差异显著。同一GWD生境下,条形叶的MDA含量高于其他两种叶形,且差异显著,SOD活性在条形叶与锯齿阔卵形叶间差异显著;除GWD 7.5~8.0 m外,POD活性在3种叶形间差异显著,其中条形叶的POD活性始终保持较高水平,平均比卵形叶、锯齿阔卵形叶高4.16、10.40倍。这表明随着GWD的增加与干旱胁迫程度的加剧,条形叶膜脂过氧化程度明显高于其他两种叶形。3种异形叶通过提高SOD、POD的活性,减轻膜损伤,增强植物的抗旱性。
2.4 胡杨异形叶生理指标与地下水埋深的相关性
Pearson相关性分析结果表明,条形叶Pro、SS与GWD呈极显著正相关,POD与GWD呈极显著负相关(表2)。卵形叶SS、SP与GWD呈显著正相关,POD与GWD呈极显著负相关(表3)。锯齿阔卵形叶SS与GWD呈极显著正相关(表4)。说明在干旱胁迫下,胡杨3种异形叶的生理指标与GWD变化密切相关,渗透调节物质的积累、抗氧化酶活性的变化与膜脂过氧化几乎同步。
表 2 条形叶生理指标与GWD的相关关系矩阵Table 2. Correlation matrix of GWD and six physiological indicators of lanceolate leaves指标 Indicator GWD Pro SS SP MDA SOD POD GWD 1.000 0.772** 0.709** −0.360 0.291 −0.194 −0.798** Pro 1.000 0.585* −0.379 0.733** 0.340 −0.754** SS 1.000 0.339 0.519 −0.299 −0.929** SP 1.000 0.119 −0.425 −0.159 MDA 1.000 0.440 −0.649* SOD 1.000 0.149 POD 1.000 注:*表示相关性显著(P<0.05),**表示相关性极显著(P<0.01)。下同。 Notes: *, significant (P<0.05); **, highly significant (P<0.01). Same below. 表 3 卵形叶生理指标与GWD的相关关系矩阵Table 3. Correlation matrix of GWD and six physiological indicators of oval leaves指标 Indicator GWD Pro SS SP MDA SOD POD GWD 1.000 0.441 0.617* 0.667* 0.098 −0.523 −0.799** Pro 1.000 0.342 0.801** 0.618* 0.395 −0.528 SS 1.000 0.760** 0.639* −0.628* −0.117 SP 1.000 0.720** −0.146 −0.389 MDA 1.000 0.082 0.174 SOD 1.000 0.034 POD 1.000 表 4 锯齿阔卵形叶生理指标与GWD的相关关系矩阵Table 4. Correlation matrix of GWD and six physiological indicators of serrated broad-oval leaves指标 Indicator GWD Pro SS SP MDA SOD POD GWD 1.000 0.392 0.840** 0.318 0.198 0.337 0.468 Pro 1.000 0.789** 0.188 0.707* 0.402 0.762** SS 1.000 0.122 0.621* 0.599* 0.784** SP 1.000 −0.430 −0.708* −0.216 MDA 1.000 0.760** 0.738** SOD 1.000 0.742** POD 1.000 2.5 胡杨异形叶生理指标的主成分分析
本研究对胡杨3种异形叶的生理指标进行了主成分分析。结果发现,条形叶前2个特征根累计贡献率达82.8 %(图5:A),PC1从左至右GWD逐渐增加,Pro、SS和MDA特征值均较高,且与PC1正相关。卵形叶第Ⅰ主成分贡献率为51.0 %,第Ⅱ主成分贡献率为26.9 %(图5:B),SP、Pro以及SS在PC1上均有较大的正载荷,其中SP与MDA有强烈的正相关,SOD在PC2上有最大的正载荷。锯齿阔卵形叶前2个特征根累计贡献率达89.9 %(图5:C),第Ⅰ主成分贡献率为64.1 %,为主要综合因子,除SP与其相关性较弱外,其他指标均与PC1密切正相关,第Ⅱ主成分中SP的特征值最高。
3. 讨论
极端干旱荒漠区降水稀少,GWD是决定植物生存、生长和发育状况的关键因素[30]。植物水势能够反映其所受干旱胁迫的程度[31],水势越低,表明受干旱胁迫的程度越高。RWC表征植物组织的水分状况,WSD愈大,植物组织水分亏缺愈严重[24, 28]。本研究表明,随GWD增加引起水分运输距离的逐渐增加[17],3种异形叶的水力性状发生不同程度的变化,叶片中的淀粉向SS转化,以降低植物水势,增加土壤与植物之间的水势差,从而增强蒸腾拉力来保证水分的正常运输,满足自身生命活动的水分需求[32]。
植物抗逆性与生物膜结构及其功能的稳定性密切相关。干旱胁迫可对细胞膜造成伤害,导致渗透物质的大量外流,引起电导率上升[33]。Pro、SS和SP对土壤水分的变化非常敏感[34],在植物遭受干旱胁迫时能够降低细胞渗透势,其积累量常被作为植物抗旱性强弱的标志[35]。本研究发现,胡杨通过代谢途径的改变来增加Pro、SS的含量,从而维持一定的细胞渗透势以抵御干旱胁迫;而SP合成受阻,可能是由于干旱胁迫下,膜脂过氧化作用加剧、细胞膜受损,同时叶片光合碳同化效率下降等原因共同导致,这与韩蕊莲等[36]的研究结果一致。
植物在逆境下遭受伤害或器官衰老时,膜脂过氧化产物MDA的积累增多,从而对植物代谢造成严重干扰,引起一系列生理生化变化[37]。MDA含量的变化一定程度上可反映脂膜的损伤程度[38]。本研究结果表明,干旱胁迫下,条形叶和卵形叶的脂膜受伤害程度高于锯齿阔卵形叶,细胞结构破坏严重。锯齿阔卵形叶的脂膜损伤程度最轻,表明其抗旱能力高于条形叶和卵形叶,这与李萍萍等[39]的结果相一致。
SOD和POD是植物体内清除ROS的重要细胞保护酶类,其活性高低可以反映植物对逆境胁迫的适应能力[40]。本研究结果显示,SOD在3种异形叶的抗氧化酶防御系统中均发挥重要作用;而POD活性呈下降趋势,可能是由于氧化胁迫导致的脂膜损伤程度严重,且SP的合成能力下降,超出了POD的调控范围[41]。POD相较于SOD对GWD的变化更为敏感,并在条形叶适应干旱胁迫的策略中发挥作用。SOD和POD协同调节以清除ROS,减轻干旱胁迫引发的伤害,这与李端等[42]的研究结果一致。
胡杨作为生长在干旱荒漠地区的特有树种,正是以其异形叶形态解剖结构、抗氧化等生理生化特性的差异来适应极端干旱的生长环境[39]。生理指标与GWD的相关性分析结果表明,渗透调节物质和抗氧化酶均在胡杨异形叶对抗逆境过程中发挥重要作用,但3种异形叶的抗旱策略不同。随GWD的增加,条形叶主要通过积累大量的Pro和SS进行渗透调节来发挥作用,从而增强细胞的抗脱水能力;卵形叶则通过SP、Pro、SS 3种渗透调节物质共同调节渗透势,从而适应外界环境的变化;而锯齿阔卵形叶则迅速提高POD和SOD的活性,同时加快光合速率[43]积累大量的SS,与Pro一起发挥渗透调节作用,使植物体维持正常代谢水平。
综上所述,GWD是影响胡杨异形叶水力及生理性状的关键限制因子,3种异形叶通过形态结构和生理性状的变化,以及性状之间协同-权衡的生态对策来适应极端干旱的荒漠环境。随着全球变暖与干旱区GWD的持续增加,锯齿阔卵形叶作为最趋成熟的一种叶形,能够充分利用渗透调节物质和抗氧化酶两大系统协同减轻干旱胁迫的伤害,抗旱能力更强,从而使其能够在极端干旱的荒漠环境下得以生存,并占据树冠的主体,这可能是胡杨叶形随生存环境而变化的原因。
4. 结论
胡杨异形叶水分与抗逆生理指标对GWD变化具有明显的响应特征,但3种异形叶对干旱逆境的适应策略存在明显差异。随GWD的增加,从土壤至胡杨枝叶的水分运输距离增加,水分向上运输的阻力与水力限制增强,锯齿阔卵形叶通过渗透调节物质和抗氧化酶两大系统的协同作用来降低水势,维持细胞膜和组织水分的相对稳定。因此,抗旱性弱的条形叶大多分布在树冠下层,并随GWD的增加逐渐消失,而抗旱性强的锯齿阔卵形叶逐渐占据树冠上层空间。
1 1)如需查阅附表内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。2 1)如需查阅附表内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。 -
图 1 UbiA异戊烯基转移酶的分类、一般催化机制和供体的结构式
A:异戊二烯焦磷酸结构式;B:UbiA异戊烯基转移酶的一般催化机制;C:异戊烯基转移酶的分类。
Figure 1. Classification and general catalytic mechanism of UbiA prenyltransferases and structural formula of isoprenyl diphosphates
A: Structural formula of isoprenyl diphosphates; B: General catalytic mechanism of UbiA superfamily prenyltransferases; C: Classification of prenyltransferases.
表 1 植物类黄酮异戊烯基转移酶的催化特性
Table 1 Catalytic properties of flavonoid prenyltransferases in plants
物种名称
Species name蛋白名称
Protein name底物类型
Substrate type底物名称
Substrate name异戊烯基供体
Prenyl donor异戊烯基取代位点
Prenyl substitution site二价阳离子
Divalent cation参考文献
References苦参
Sophora flavescens Alt.SfN8DT-1 二氢黄酮 Liquiritigenin>Naringenin>
HesperetinDMAPP A环C-8位 Mg2 + [7] SfiLDT 查尔酮 Isoliquiritigenin DMAPP 未知 Mg2 + [33] SfG6DT 异黄酮 Genistein>Biochanina DMAPP、GPP1、FPP1 A环C-6位 Mg2 + >Ni2 + >
Mn2 + >Ca2 +[33] SfFPT 二氢查尔酮 Phloretin DMAPP、GPP2 A环C-3'位 Mg2 + >Ba2 + >Ca2 + >Fe2 + >Co2 + >Cu2 + >Zn2 + >Mn2 + [28] 二氢黄酮 Eriodictyol>Naringenin>
Pinocembrin>Liquiritigenin>
Hesperetin>Isosakuranetin>
Steppogenin>Tsugafolin>
SakuranetinA环C-8位 黄酮 Chrysin A环C-8位 二氢黄酮醇 Taxifolin A环C-8位 大豆
Glycine max (L.) Merr.GmG4DT 紫檀烷 Glycinol>Maackiain DMAPP A环C-4位 Mg2 + >Mn2 + >Co2 + [30] GmG2DT 紫檀烷 Glycinol DMAPP A环C-2位 Mg2 + >Mn2 + [29] GmPT01 紫檀烷 Glycinol DMAPP A环C-2位 Mg2 + [31] GmIDT1 异黄酮 Daidzein>Genistein DMAPP B环 Mg2 + >Mn2 + [29] GmIDT2 异黄酮 Daidzein≈Genistein DMAPP A环 Mg2 + >Mn2 + [29] GmIDT3 异黄酮 Daidzein、Genistein DMAPP 未知 Mg2 + [31] 白羽扇豆
Lupinus albus L.LaPT1 异黄酮 2-Hydroxygenistein>
GenisteinDMAPP B环C-3'位 Mg2 + >Mn2 + >Ni2 + >Co2 + >Zn2 + >Ca2 + [34] LaPT2 黄酮醇 Kaempferol>Kaempferide>Quercetin>Galangin>
Fesitin>MorinDMAPP A环C-8位 Mg2 + [12] 二氢黄酮 Naringenin DMAPP 未知 甘草
Glycyrrhiza uralensis Fisch.GuA6DT 黄酮 Apigenin>Chrysin>
Diosmtin>Luteolin>
Norartocarpetin>
ChrysoeroilDMAPP、GPP1 A环C-6位 Mg2 + >Mn2 + >Zn2 + >Fe2 + >Co2 + >Ca2 + >Ba2 + [11] GuILDT 查尔酮 2',4'-Dihydroxychalcone>
Isoliquiritigenin>
2,4,2',4'-Tetrahydro-xychalcone>
NaringeninchalconeDMAPP A环C-3'位 Mg2 + >Co2 + >Ni2 + >Fe2 + >Ba2 + >Mn2 + >Ca2 + [35] 百脉根
Lotus japonicus L.LjG6DT 异黄酮 Genistein DMAPP A环C-6位 Mg2 + >Co2 + >Mn2 + >Ca2 + >Zn2 + >Fe2 + [36] 补骨脂
Psoralea corylifolia (L.) Medik.PcM4DT 紫檀烷 Maackiain>3-Hydroxy-9-methoxypterocarpan DMAPP A环C-4位 Mg2 + >Mn2 + >Co2 + >Fe2 + >Ba2 + >Sr2 + >Ca2 + >Sn2 + >Ni2 + >Zn2 + [37] 桑
Morus alba L.MaIDT 查尔酮 Isoliquiritigenin>
2',4'-Dihydroxychalcone>
2,4,2',4'-Tetrahydroxychalcone>
ButeinDMAPP、GPP1 A环C-3'位 Mg2 + >Ba2 + >Ca2 + >Mn2 + >Fe2 + >Ni2 + [32] 异黄酮 Genistein>2'-Hydroxygenistein A环C-6位 黄酮 Apigenin A环C-6位 柘树
Cudrania tricuspidata (Carr.) Bur.CtIDT 查尔酮 Isoliquiritigenin>
2,4,2',4'-Tetrahydroxychalcone>
2',4'-Dihydroxychalcone>
ButeinDMAPP、GPP1 A环C-3'位 Mg2 + >Mn2 + >Ca2 + >Fe2 + >Ba2 + [32] 异黄酮 2'-Hydroxygenistein>
GenisteinA环C-6位 大麻
Cannabis sativa L.CsPT3 黄酮 Chrysoeriol>Apigenin DMAPP、GPP A环C-6位 Mg2 + [38] CsPT8 黄酮 Apigenin DMAPP 未知 Mg2 + [38] 啤酒花
Humulus lupulus L.HlPT-1 查尔酮 Naringenin chalcone DMAPP A环C-3'位 Mg2 + [39] 柔毛淫羊藿
Epimedium pubescens Maxim.EpPT8 黄酮醇 Kaempferol> Quercetin DMAPP A环C-8位 Mg2 + [40] 黄酮 Apigenin 箭叶淫羊藿
Epimedium sagittatum (Sieb. et Zucc.) Maxim.EsPT2 黄酮醇 Kaempferol>Kaempferide DMAPP A环C-8位 Mg2 + [41] 二氢黄酮 Naringenin 注:“>”用于表示对底物的催化活性顺序;1 研究只证明提供了该供体与最适底物发生异戊烯基化反应;2 GPP作为供体时,SfFPT仅催化pinocembrin,isosakuranetin和naringenin发生异戊烯基化反应。 Notes: “>” indicates order of catalytic activity to the substrate; 1 Prenylation of the donor with an optimal substrate is demonstrated; 2 SfFPT only catalyzed prenylation of pinocembrin, isosakuranetin, and naringenin when GPP was used as the prenyl donor. 表 2 植物中香豆素异戊烯基转移酶的催化特性
Table 2 Catalytic properties of coumarin prenyltransferases in plants
物种名称
Species
name蛋白名称
Protein name底物名称
Substrate name异戊烯基
供体
Prenyl donor异戊烯基取代位点
Prenyl substitution
site二价阳离子
Divalent cation参考文献
References欧芹Petroselinum crispum (Mill.) Hill PcPT Umbelliferone DMAPP C-6位>C-8位 Mg2 + [44] 欧防风Pastinaca sativa L. PsPT1 Umbelliferone DMAPP C-6位>C-8位 Mg2 + [42] PsPT2 Umbelliferone DMAPP C-8位>C-6位 Mg2 + [42] 柠檬Citrus limon (L.) Burm. F. ClPT1 Umbelliferone>Esculetin>5,7-hydroxycoumarin
>5-Methoxy-7-hydroxycoumarinGPP C-8位 Mg2 + [45] 无花果Ficus carica L. FcPT1 Umbelliferone DMAPP C-6位 Mg2 + [46] 5-Methoxy-7-hydroxycoumarin DMAPP 未知 Mg2 + 葡萄柚Citrus paradisi Macf. CpPT1 5,7-Dihydroxycoumarin, 8-Hydroxybergapten 5-Hydroxy-7-methoxycoumarin, Bergaptol, GPP 5-OH或8-OH Mg2 + >Ni2 + >Co2 + >Mn2 + >Zn2 + >Ca2 + [47] CpPT3 Umbelliferone GPP C-8位 Mg2 + [47] 小苦橙Citrus micrantha Wester CmiPT1a / b Bergaptol和Xanthotoxol GPP 5-OH或8-OH Mg2 + [47] 明日叶Angelica keiskei (Miquel) Koidz. AkPT1 Bergaptol和Xanthotoxol DMAPP 5-OH或8-OH Mg2 + >Mn2 + >Ca2 + [47] 大豆Glycine max (L.) Merr. GmC4DT Coumestrol DMAPP C-4位 Mg2 + >Mn2 + [29] 九里香Murraya exotica L. MePT1 Umbelliferone GPP C-8位、C-6位和7-OH Mg2 + [48] -
[1] Winkelblech J,Fan AL,Li SM. Prenyltransferases as key enzymes in primary and secondary metabolism[J]. Appl Microbiol Biotechnol,2015,99 (18):7379−7397. doi: 10.1007/s00253-015-6811-y
[2] Yang YH,Ke N,Liu SX,Li WK. Structural and biochemical analysis of intramembrane prenyltransferases in the UbiA superfamiIy[J]. Methods Enzymol,2017,584:309−347.
[3] Li WK. Bringing bioactive compounds into membranes:the UbiA superfamily of intramembrane aromatic prenyltransferases[J]. Trends Biochem Sci,2016,41 (4):356−370. doi: 10.1016/j.tibs.2016.01.007
[4] Bonitz T,Alva V,Saleh O,Lupas AN,Heide L. Evolutionary relationships of microbial aromatic prenyltransferases[J]. PLoS One,2011,6 (11):e27336. doi: 10.1371/journal.pone.0027336
[5] Young IG,Leppik RA,Hamilton JA,Gibson F. Biochemical and genetic studies on ubiquinone biosynthesis in Escherichia coli K-12:4-hydroxybenzoate octaprenyltransferase[J]. J Bacteriol,1972,110 (1):18−25. doi: 10.1128/jb.110.1.18-25.1972
[6] Wang J,Chu SS,Zhu Y,Cheng H,Yu DY. Positive selection drives neofunctionalization of the UbiA prenyltransferase gene family[J]. Plant Mol Biol,2015,87 (4-5):383−394. doi: 10.1007/s11103-015-0285-2
[7] Sasaki K,Mito K,Ohara K,Yamamoto H,Yazaki K. Cloning and characterization of naringenin 8-prenyltransferase,a flavonoid-specific prenyltransferase of Sophora flavescens[J]. Plant Physiol,2008,146 (3):1075−1084. doi: 10.1104/pp.107.110544
[8] Bo ST, Chang SK, Zhu H, Jiang YM, Yang B. Naturally occurring prenylated stilbenoids: food sources, biosynthesis, applications and health benefits[J]. Crit Rev Food Sci Nutr, 2022. Doi: 10.1080/10408398.2022.2056131.
[9] De Bruijn WJC,Levisson M,Beekwilder J,van Berkel WJH,Vincken JP. Plant aromatic prenyltransferases:tools for microbial cell factories[J]. Trends Biotechnol,2020,38 (8):917−934. doi: 10.1016/j.tibtech.2020.02.006
[10] Marin M,Manez S. Recent trends in the pharmacological activity of isoprenyl phenolics[J]. Curr Med Chem,2013,20 (2):272−279. doi: 10.2174/092986713804806676
[11] Li JH,Chen RD,Wang RS,Liu X,Xie D,et al. GuA6DT,a regiospecific prenyltransferase from Glycyrrhiza uralensis,catalyzes the 6-prenylation of flavones[J]. ChemBioChem,2014,15 (11):1673−1681. doi: 10.1002/cbic.201402160
[12] Liu JY,Xia YY,Jiang WB,Shen GA,Pang YZ. LaPT2 gene encodes a flavonoid prenyltransferase in white lupin[J]. Front Plant Sci,2021,12:673337. doi: 10.3389/fpls.2021.673337
[13] Okada K,Ohara K,Yazaki K,Nozaki K,Uchida N,et al. The AtPPT1 gene encoding 4-hydroxybenzoate polyprenyl diphosphate transferase in ubiquinone biosynthesis is required for embryo development in Arabidopsis thaliana[J]. Plant Mol Biol,2004,55 (4):567−577. doi: 10.1007/s11103-004-1298-4
[14] Ohara K,Yamamoto K,Hamamoto M,Sasaki K,Yazaki K. Functional characterization of OsPPT1,which encodes p-hydroxybenzoate polyprenyltransferase involved in ubiquinone biosynthesis in Oryza sativa[J]. Plant Cell Physiol,2006,47 (5):581−590. doi: 10.1093/pcp/pcj025
[15] Yazaki K,Kunihisa M,Fujisaki T,Sato F. Geranyl diphosphate:4-hydroxybenzoate geranyltransferase from Lithospermum erythrorhizon:cloning and characterization of a key enzyme in Shikonin biosynthesis[J]. J Biol Chem,2002,277 (8):6240−6246. doi: 10.1074/jbc.M106387200
[16] Ohara K,Muroya A,Fukushima N,Yazaki K. Functional characterization of LePGT1,a membrane-bound prenyltransferase involved in the geranylation of p-hydroxybenzoic acid[J]. Biochem J,2009,421 (2):231−241. doi: 10.1042/BJ20081968
[17] Wang S,Wang RS,Liu T,Zhan ZL,Kang LP,et al. Production of 3-geranyl-4-hydroxybenzoate acid in yeast,an important intermediate of Shikonin biosynthesis pathway[J]. FEMS Yeast Res,2017,17 (7):fox065.
[18] Venkatesh TV,Karunanandaa B,Free DL,Rottnek JM,Baszis SR,Valentin HE. Identification and characterization of an Arabidopsis homogentisate phytyltransferase paralog[J]. Planta,2006,223 (6):1134−1144. doi: 10.1007/s00425-005-0180-1
[19] Sadre R,Gruber J,Frentzen M. Characterization of homogentisate prenyltransferases involved in plastoquinone-9 and tocochromanol biosynthesis[J]. FEBS Lett,2006,580 (22):5357−5362. doi: 10.1016/j.febslet.2006.09.002
[20] Tian L,DellaPenna D,Dixon RA. The pds2 mutation is a lesion in the Arabidopsis homogentisate solanesyltransferase gene involved in plastoquinone biosynthesis[J]. Planta,2007,226 (4):1067−1073. doi: 10.1007/s00425-007-0564-5
[21] 姚兴兰,王磊,张兰. 植物维生素E生物强化研究进展[J]. 生物技术进展,2020,10(5):479−486. doi: 10.19586/j.2095-2341.2020.0046 Yao XL,Wang L,Zhang L. Progress of vitamin E biofortification in plants[J]. Current Biotechnology,2020,10 (5):479−486. doi: 10.19586/j.2095-2341.2020.0046
[22] Eckhardt U,Grimm B,Hörtensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants[J]. Plant Mol Biol,2004,56 (1):1−14. doi: 10.1007/s11103-004-2331-3
[23] Hederstedt L. Heme A biosynthesis[J]. Biochim Biophys Acta,2012,1817 (6):920−927. doi: 10.1016/j.bbabio.2012.03.025
[24] Basset GJ,Latimer S,Fatihi A,Soubeyrand E,Block A. Phylloquinone (vitamin K1):occurrence,biosynthesis and functions[J]. Mini-Rev Med Chem,2017,17 (12):1028−1038.
[25] Ming LG,Lv X,Ma XN,Ge BF,Zhen P,et al. The prenyl group contributes to activities of phytoestrogen 8-prenynaringenin in enhancing bone formation and inhibiting bone resorption in vitro[J]. Endocrinology,2013,154 (3):1202−1214. doi: 10.1210/en.2012-2086
[26] Shi SC,Li JC,Zhao XM,Liu QB,Song SJ. A comprehensive review:biological activity,modification and synthetic methodologies of prenylated flavonoids[J]. Phytochemistry,2021,191:112895. doi: 10.1016/j.phytochem.2021.112895
[27] Yang XM,Jiang YM,Yang JL,He JR,Sun J,et al. Prenylated flavonoids,promising nutraceuticals with impressive biological activities[J]. Trends Food Sci Technol,2015,44 (1):93−104. doi: 10.1016/j.jpgs.2015.03.007
[28] Chen RD,Liu X,Zou JH,Yin YZ,Ou B,et al. Regio- and stereospecific prenylation of flavonoids by Sophora flavescens prenyltransferase[J]. Adv Synth Catal,2013,355 (9):1817−1828. doi: 10.1002/adsc.201300196
[29] Yoneyama K,Akashi T,Aoki T. Molecular characterization of soybean pterocarpan 2-dimethylallyltransferase in glyceollin biosynthesis:local gene and whole-genome duplications of prenyltransferase genes led to the structural diversity of soybean prenylated isoflavonoids[J]. Plant Cell Physiol,2016,57 (12):2497−2509. doi: 10.1093/pcp/pcw178
[30] Akashi T,Sasaki K,Aoki T,Ayabe S,Yazaki K. Molecular cloning and characterization of a cDNA for pterocarpan 4-dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin,a soybean phytoalexin[J]. Plant Physiol,2009,149 (2):683−693. doi: 10.1104/pp.108.123679
[31] Sukumaran A,McDowell T,Chen L,Renaud J,Dhaubhadel S. Isoflavonoid-specific prenyltransferase gene family in soybean:GmPT01,a pterocarpan 2-dimethylallyltransferase involved in glyceollin biosynthesis[J]. Plant J,2018,96 (5):966−981. doi: 10.1111/tpj.14083
[32] Wang RS,Chen RD,Li JH,Liu X,Xie KB,et al. Molecular characterization and phylogenetic analysis of two novel regio-specific flavonoid prenyltransferases from Morus alba and Cudrania tricuspidata[J]. J Biol Chem,2014,289 (52):35815−35825. doi: 10.1074/jbc.M114.608265
[33] Sasaki K,Tsurumaru Y,Yamamoto H,Yazaki K. Molecular characterization of a membrane-bound prenyltransferase specific for isoflavone from Sophora flavescens[J]. J Biol Chem,2011,286 (27):24125−24134. doi: 10.1074/jbc.M111.244426
[34] Shen GA,Huhman D,Lei ZT,Snyder J,Sumner LW,Dixon RA. Characterization of an isoflavonoid-specific prenyltransferase from Lupinus albus[J]. Plant Physiol,2012,159 (1):70−80. doi: 10.1104/pp.112.195271
[35] Li JH,Chen RD,Wang RS,Liu X,Xie KB,et al. Biocatalytic access to diverse prenylflavonoids by combining a regiospecific C-prenyltransferase and a stereospecific chalcone isomerase[J]. Acta Pharm Sin B,2018,8 (4):678−686. doi: 10.1016/j.apsb.2018.01.009
[36] Liu JY,Jiang WB,Xia YY,Wang XM,Shen GA,Pang YZ. Genistein-specific G6DT gene for the inducible production of wighteone in Lotus japonicus[J]. Plant Cell Physiol,2018,59 (1):128−141. doi: 10.1093/pcp/pcx167
[37] He JB,Dong ZY,Hu ZM,Kuang Y,Fan JR,et al. Regio-specific prenylation of pterocarpans by a membrane-bound prenyltransferase from Psoralea corylifolia[J]. Org Biomol Chem,2018,16 (36):6760−6766. doi: 10.1039/C8OB01724G
[38] Rea KA,Casaretto JA,Al-Abdul-Wahid MS,Sukumaran A,Geddes-Mcalister J,et al. Biosynthesis of cannflavins A and B from Cannabis sativa L.[J]. Phytochemistry,2019,164:162−171. doi: 10.1016/j.phytochem.2019.05.009
[39] Tsurumaru Y,Sasaki K,Miyawaki T,Uto Y,Momma T,et al. HlPT-1,a membrane-bound prenyltransferase responsible for the biosynthesis of bitter acids in hops[J]. Biochem Biophys Res Commun,2012,417 (1):393−398. doi: 10.1016/j.bbrc.2011.11.125
[40] Shen G,Luo Y,Yao Y,Meng G,Zhang Y,et al. The discovery of a key prenyltransferase gene assisted by a chromosome-level Epimedium pubescens genome[J]. Front Plant Sci,2022,13:1034943.
[41] Wang PP,Li CJ,Li XD,Huang WJ,Wang Y,et al. Complete biosynthesis of the potential medicine icaritin by engineered Saccharomyces cerevisiae and Escherichia coli[J]. Sci Bull,2021,66 (18):1906−1916. doi: 10.1016/j.scib.2021.03.002
[42] Munakata R,Olry A,Karamat F,Courdavault V,Sugiyama A,et al. Molecular evolution of parsnip (Pastinaca sativa) membrane-bound prenyltransferases for linear and/or angular furanocoumarin biosynthesis[J]. New Phytol,2016,211 (1):332−344. doi: 10.1111/nph.13899
[43] Venugopala KN,Rashmi V,Odhav B. Review on natural coumarin lead compounds for their pharmacological activity[J]. Biomed Res Int,2013,2013:963248.
[44] Karamat F,Olry A,Munakata R,Koeduka T,Sugiyama A,et al. A coumarin-specific prenyltransferase catalyzes the crucial biosynthetic reaction for furanocoumarin formation in parsley[J]. Plant J,2014,77 (4):627−638. doi: 10.1111/tpj.12409
[45] Munakata R,Inoue T,Koeduka T,Karamat F,Olry A,et al. Molecular cloning and characterization of a geranyl diphosphate-specific aromatic prenyltransferase from lemon[J]. Plant Physiol,2014,166 (1):80−90. doi: 10.1104/pp.114.246892
[46] Munakata R,Kitajima S,Nuttens A,Tatsumi K,Takemura T,et al. Convergent evolution of the UbiA prenyltransferase family underlies the independent acquisition of furanocoumarins in plants[J]. New Phytol,2020,225 (5):2166−2182. doi: 10.1111/nph.16277
[47] Munakata R,Olry A,Takemura T,Tatsumi K,Ichino T,et al. Parallel evolution of UbiA superfamily proteins into aromatic O-prenyltransferases in plants[J]. Proc Natl Acad Sci USA,2021,118 (17):e2022294118. doi: 10.1073/pnas.2022294118
[48] Li N,Liu X,Zhang ML,Zhang ZK,Zhang BB,et al. Characterization of a coumarin C-/O-prenyltransferase and a quinolone C-prenyltransferase from Murraya exotica[J]. Org Biomol Chem,2022,20 (28):5535−5542. doi: 10.1039/D2OB01054B
[49] Li HX,Ban ZN,Qin H,Ma LY,King AJ,Wang GD. A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway[J]. Plant Physiol,2015,167 (3):650−659. doi: 10.1104/pp.114.253682
[50] Fiesel T,Gaid M,Müller A,Bartels J,El-Awaad I,et al. Molecular cloning and characterization of a xanthone prenyltransferase from Hypericum calycinum cell cultures[J]. Molecules,2015,20 (9):15616−15630. doi: 10.3390/molecules200915616
[51] Nagia M,Gaid M,Biedermann E,Fiesel T,El-Awaad I,et al. Sequential regiospecific gem-diprenylation of tetrahydroxyxanthone by prenyltransferases from Hypericum sp.[J]. New Phytol,2019,222 (1):318−334. doi: 10.1111/nph.15611
[52] Akinwumi BC,Bordun KAM,Anderson HD. Biological activities of stilbenoids[J]. Int J Mol Sci,2018,19 (3):792. doi: 10.3390/ijms19030792
[53] Yang TH,Fang LL,Sanders S,Jayanthi S,Rajan G,et al. Stilbenoid prenyltransferases define key steps in the diversification of peanut phytoalexins[J]. J Biol Chem,2018,293 (1):28−46. doi: 10.1074/jbc.RA117.000564
[54] Zhong ZH,Zhu W,Liu SZ,Guan QJ,Chen X,et al. Molecular characterization of a geranyl diphosphate-specific prenyltransferase catalyzing stilbenoid prenylation from Morus alba[J]. Plant Cell Physiol,2018,59 (11):2214−2227.
[55] Munakata R,Takemura T,Tatsumi K,Moriyoshi E,Yanagihara K,et al. Isolation of Artemisia capillaris membrane-bound di-prenyltransferase for phenylpropanoids and redesign of artepillin C in yeast[J]. Commun Biol,2019,2:384. doi: 10.1038/s42003-019-0630-0
[56] Saeki H,Hara R,Takahashi H,Iijima M,Munakata R,et al. An aromatic farnesyltransferase functions in biosynthesis of the anti-HIV meroterpenoid daurichromenic acid[J]. Plant Physiol,2018,178 (2):535−551. doi: 10.1104/pp.18.00655
[57] Luo XZ,Reiter MA,D’Espaux L,Wong J,Denby CM,et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast[J]. Nature,2019,567 (7746):123−126. doi: 10.1038/s41586-019-0978-9
[58] Marsafari M,Samizadeh H,Rabiei B,Mehrabi A,Koffas M,Xu P. Biotechnological production of flavonoids:an update on plant metabolic engineering,microbial Host selection,and genetically encoded biosensors[J]. Biotechnol J,2020,15 (8):1900432. doi: 10.1002/biot.201900432
[59] Levisson M,Araya-Cloutier C,de Bruijn WJC,van Der Heide M,Salvador López JM,et al. Toward developing a yeast cell factory for the production of prenylated flavonoids[J]. J Agric Food Chem,2019,67 (49):13478−13486. doi: 10.1021/acs.jafc.9b01367
-
期刊类型引用(1)
1. 刘斌. 2023年度叶尔羌河流域生态输水效益评估. 云南水力发电. 2025(02): 5-8 . 百度学术
其他类型引用(0)
-
其他相关附件
-
DOCX格式
落艳娇附图1-2 点击下载(980KB)
-