高级检索+

慈姑属植物的生态及进化生物学研究进展

戴璨, 覃道凤, 罗文杰

戴璨, 覃道凤, 罗文杰. 慈姑属植物的生态及进化生物学研究进展[J]. 植物科学学报, 2015, 33(5): 620-632. DOI: 10.11913/PSJ.2095-0837.2015.50620
引用本文: 戴璨, 覃道凤, 罗文杰. 慈姑属植物的生态及进化生物学研究进展[J]. 植物科学学报, 2015, 33(5): 620-632. DOI: 10.11913/PSJ.2095-0837.2015.50620
DAI Can, QIN Dao-Feng, LUO Wen-Jie. Ecological and Evolutionary Studies on Sagittaria (Alismataceae)[J]. Plant Science Journal, 2015, 33(5): 620-632. DOI: 10.11913/PSJ.2095-0837.2015.50620
Citation: DAI Can, QIN Dao-Feng, LUO Wen-Jie. Ecological and Evolutionary Studies on Sagittaria (Alismataceae)[J]. Plant Science Journal, 2015, 33(5): 620-632. DOI: 10.11913/PSJ.2095-0837.2015.50620

慈姑属植物的生态及进化生物学研究进展

基金项目: 国家自然科学基金项目(31270279);教育部留学回国人员科研启动基金。
详细信息
    作者简介:

    戴璨(1983-),女,博士,研究方向为植物生态和进化生物学。

    通讯作者:

    戴璨, E-mail: daican@hubu.edu.cn

  • 中图分类号: Q949.71+2.5

Ecological and Evolutionary Studies on Sagittaria (Alismataceae)

  • 摘要: 慈姑属(Sagittaria L.)隶属于泽泻科,是世界广布的水生植物,其生境多样、叶形和繁殖表型复杂,进化地位较特殊,是生态和进化生物学研究较典型的材料。笔者在查阅相关慈姑属研究的大量文献的基础上,对前人研究的物种、探讨的问题及研究结果进行了归纳与总结:慈姑属物种存在广布种和濒危种,且个别物种的濒危现状可能与其生境条件相关;慈姑属的个别种类成为稻田入侵杂草,其竞争能力因慈姑种类及水稻栽培品种的不同而各异;环境对慈姑属植物有很强的塑造作用,不同环境还会造成慈姑所在的水生植物群落结构发生变化;慈姑属植物具有较高的遗传多样性;在繁殖方面,慈姑属植物体现出不同繁殖方式和两性功能的权衡,以及在繁育系统上从雌雄同株到雌雄异株的进化途径。本文还提出了相关研究存在的不足、研究中应注意的科学问题,并对慈姑属植物未来的研究方向提供了新思路。
    Abstract: The genus Sagittaria belongs to Alismataceae, of which many aquatic plants have worldwide distribution. The plants in Sagittaria live in diverse habitats, with complex phenotypic response to their environment (both vegetative and reproductive), and are basal lineages in monocots, which make them a good study system for ecologists and evolutionary biologists. Among all related studies on Sagittaria, this review generalized the species of interest, the questions being asked and their conclusions. Typically, there are both common and endangered species in this genus, and ecological factors probably account for the endangerment. Some Sagittaria species have become invasive weeds in areas of paddy fields;however, competitive ability seems variable depending on different rice cultivars. Environment plays a big role in shaping phenotypes and has a large effect on the community structure of aquatic systems with Sagittaria plants. There are relatively high levels of genetic variation in Sagittaria species. With regard to reproduction, the plants show tradeoffs between sexual and asexual reproduction, and between two gender functions. There is strong evidence in the evolutionary path from monoecy to dioecy in S. trifolia. In this review, we also mention the lack of research in certain areas, emphasize some methods and ideas, and point out future directions.
  • [1] Haynes RR, Les D, Holm-Nielsen LB. Alismata-ceae[M]. Berlin: Springer, 1998: 11-25.
    [2] Haynes RR, Hellquist BC.Alismataceae[M]// Flora of North American Editorial Committee, eds. Flora of North America (http://www.fna.org/FNA), 2004.
    [3] Haynes RR, Holm-Nielsen LB. The Alismataceae[J]. Flora Neotropica, 1994, 64: 1-112.
    [4] 陈家宽. 中国慈姑属的系统与进化植物学研究[M]. 武汉: 武汉大学出版社, 1989.
    [5] Neumann A, Holloway R, Busby C. Determination of prehistoric use of arrowhead (Sagittaria, Alis-mataceae) in the Great Basin of North America by scanning electron microscopy[J]. Econ Bot, 1989, 43(3): 287-296.
    [6] 潘晓军, 刘芬. 慈姑的研究进展[J]. 西北药学杂志, 2006, 21(3):4.
    [7] 李峰, 柯卫东. 慈姑种质资源描述规范和数据标准[M]. 北京:中国农业科学技术出版社, 2013.
    [8] 付晓云, 梁茵, 黄彦青.污染水体中水生植物的生理效应研究[J].西北林学院学报, 2013, 28(1): 63-66.
    [9] 单丹, 罗安程. 不同水生植物对磷的吸收特性[J]. 浙江农业学报, 2008, 20(2): 135-138.
    [10] 何娜, 孙占祥, 张玉龙, 刘鸣达. 不同水生植物去除水体氮磷的效果[J]. 环境工程学报, 2013, 7(4): 1295-1300.
    [11] 温胜芳. 不同种类湿地植物的磷素根际效应[D]. 青岛:中国海洋大学, 2009.
    [12] 张毅敏, 高月香, 吴小敏, 陈楚星, 魏京玲. 复合立体生物浮床技术对微污染水体氮磷的去除效果[J]. 生态与农村环境学报, 2010, 26(S1): 24-29.
    [13] 胡萃, 刘强, 龙婉婉,郭琳, 廖国平, 周松. 水生植物对不同富营养化程度水体净化能力研究[J]. 环境科学与技术, 2011, 34(10): 6-9.
    [14] 李淑英, 周元清, 胡承,章新, 和桂凤. 水生植物组合后根际微生物及水净化研究[J]. 环境科学与技术, 2010, 33(3): 148-153.
    [15] 吕金虎, 钟艳霞, 高鹏. 银川平原人工湿地水生植物去污能力研究[J]. 水土保持通报, 2013, 33(1):192-195.
    [16] 朱莹. 慈姑对磷、氮污染物的去除规律研究[D]. 南京:河海大学, 2005.
    [17] 李林初. 泽泻和慈姑核型的比较研究[J]. 武汉植物学研究, 1985, 3(4): 397-402.
    [18] Liu X, Zou J, Wang ZZ, Hu X, Liang X, Wei J. Degradation of diesel pollutants in Huangpu-Yangtze River estuary wetland using a plant-microbes system[J]. Procedia Environ Sci, 2012, 16: 656-660.
    [19] Fu XY, He XY, Chen W, Liu ZL. A test of three macrophyte species to reduce total nitrogen and total phosphorus from wastewater[J]. Adv Mat Res, 2012, 518-523: 2288-2292.
    [20] Hu JZ, Pei DL, Liang F, Shi GX. Growth responses of Sagittaria sagittifolia L.plants to water contamination with cadmium[J]. Russ J Plant Physiol, 2009, 56(5): 686-694.
    [21] Daimon N, Miura R, Tominaga T. Growth and reproductive success of the seed-derived plants of Sagittaria trifolia emerging at different times[J]. Weed Biol Manag, 2014, 14(3): 178-185.
    [22] Iwakami S, Watanabe H, Miura T, Matsumoto H, Uchino A. Occurrence of sulfonylurea resistance in Sagittaria trifolia, a basal monocot species, based on target-site and non-target site resistance[J]. Weed Biol Manag, 2014, 14(1): 43-49.
    [23] 王海洋, 陈家宽, 周进. 武夷慈姑珠芽营养繁殖的生物学研究[J]. 武汉大学学报:自然科学版, 1997,43(6): 756-758.
    [24] Zhao SY, Chen JM, Wang QF, Liu F, Guo YH, Wahiti RG. The extent of clonality and genetic diversity in Sagittaria lichuanensis (Alismataceae), an endemic marsh herb in China[J]. Bot Stud, 2010, 51(3): 363-369.
    [25] 刘贵华, 袁龙义, 苏睿丽, 李伟. 储藏条件和时间对六种多年生湿地植物种子萌发的影响[J]. 生态学报, 2005, 25(2): 371-374.
    [26] Liu F, Liao YY, Li W, Chen JM, Wang QF, Motley TJ. The effect of pollination on resource allocation among sexual reproduction, clonal reproduction, and vegetative growth in Sagittaria potamogetifolia (Alismataceae)[J]. Eco Res, 2010, 25(3): 495-499.
    [27] 戴璨, 汤璐瑛. 濒危植物浮叶慈姑遗传多样性的RAPD分析[J]. 氨基酸和生物资源, 2005, 27(1): 6-9.
    [28] Yue XL, Chen JM, Guo YH, Wang QF. Population genetic structure of Sagittaria natans (Alismata-ceae), an endangered species in China, revealed by nuclear SSR loci analyses[J]. Biochem Syst Ecol, 2011, 39(4): 412-418.
    [29] Baugh T, Schlosser KK. Management considerations for the restoration of bunched arrowhead Sagittaria fasciculata[J]. Nat Areas J, 2013, 33(1): 105-108.
    [30] Dripps W, Lewis GP, Baxter R, Brannon AC. Hydrogeochemical characterization of headwater seepages inhabited by the endangered bunched arrowhead (Sagittaria fasciculata) in the Upper Piedmont of South Carolina[J]. Southeas Nat, 2013, 12(3): 619-637.
    [31] Seal AN, Pratley JE. The specificity of allelopathy in rice (Oryza sativa)[J]. Weed Res, 2010, 50(4): 303-311.
    [32] Lima BV, Soares DJ, Barreto RW. Inoculum density of Plectosporium alismatis, a potential mycoherbicide, in relation to control of the aquatic weed Sagittaria montevidensis[J]. Trop Plant Pathol, 2010, 35(4): 236-240.
    [33] Sithole J. Sagittaria platyphylla a new invader of South Africa’s water systems: Please report sigh-tings[J]. S Afr J Bot, 2011, 77(2): 578-579.
    [34] 刘帆, 张彦文, 崔心红, 陈进明,王青锋. 贵州泽泻科植物分布新记录——利川慈姑[J]. 热带亚热带植物学报, 2009, 17(1): 86-88.
    [35] 张彦文, 黄胜君, 赵兴楠,刘帆, 赵骥民. 鸭绿江口湿地新记录外来种——禾叶慈姑[J]. 武汉植物学研究, 2010, 28(5): 631-633.
    [36] Richards JH, Ivey CT. Morphological plasticity of Sagittaria lancifolia in response to phosphorus[J]. Aquat Bot, 2004, 80(1): 53-67.
    [37] Demetrio GR, Barbosa MEA, Coelho FF. Water level-dependent morphological plasticity in Sagittaria montevidensis Cham. and Schl. (Alismata-ceae)[J]. Brazi J Biol, 2014, 74(S3): 199-206.
    [38] Sanchez-Reyes V, Gomez CZ, Manjarrez FJ, White-Olascoaga L. Effect of water level on the size and leaf biomass of Sagittaria macrophylla (Alismataceae)[J]. Interciencia, 2012, 37(10): 775-781.
    [39] 韦三立. 环境温度对阔叶慈姑发育的影响[J]. 北方园艺, 2007, 12:125-126.
    [40] Jakubas E, Gabka M, Joniak T. Morphological forms of two macrophytes (yellow water-lily and arrowhead) along velocity gradient[J]. Biologia, 2014, 69(7): 840-846.
    [41] López-Rosas H, Moreno-Casasola P. Invader versus natives: effects of hydroperiod on competition between hydrophytes in a tropical freshwater marsh[J]. Basic App Ecol, 2012, 13(1): 40-49.
    [42] Martin SB, Shaffer GP. Sagittaria biomass partitioning relative to salinity, hydrologic regime, and substrate type: implications for plant distribution patterns in coastal Louisiana, United States[J]. J Coast Res, 2005, 1(1): 167-174.
    [43] Holm GO, Sasser CE. Differential salinity response between two Mississippi River subdeltas: implications for changes in plant composition[J]. Estua-ries, 2001, 24(1): 78-89.
    [44] Howard RJ, Mendelssohn IA. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses[J]. Aquat Bot, 2000, 68(2): 143-164.
    [45] La Peyre MKG, Grace JB, Hahn E, Mendelssohn IA. The importance of competition in regulating plant species abundance along a salinity gradient[J]. Ecology, 2001, 82(1): 62-69.
    [46] Howard RJ, Mendelssohn IA. Salinity as a constraint on growth of oligohaline marsh macrophytes. Ⅰ. Species variation in stress tolerance[J]. Am J Bot, 1999, 86(6): 785-794.
    [47] Howard RJ, Mendelssohn IA. Salinity as a constraint on growth of oligohaline marsh macrophytes. Ⅱ. Salt pulses and recovery potential[J]. Am J Bot, 1999, 86(6): 795-806.
    [48] Egertson CJ, Kopaska JA, Downing JA. A century of change in macrophyte abundance and composition in response to agricultural eutrophication[J]. Hydrobiologia, 2004, 524(1): 145-156.
    [49] DeLaune RD, Pezeshki SR, Jugsujinda A, Lindau CW. Sensitivity of US Gulf of Mexico coastal marsh vegetation to crude oil: Comparison of greenhouse and field responses[J]. Aquat Ecol, 2003, 37(4): 351-360.
    [50] Kors A, Vilbaste S, Kaeiro K, Peeter P, Kai P, Jack T, Malle V. Temporal changes in the composition of macrophyte communities and environmental factors governing the distribution of aquatic plants in an unregulated lowland river (Emajogi, Estonia)[J]. Boreal Environ Res, 2012, 17(6): 460-472.
    [51] 赵慧娟. 慈姑对水体中氮、磷的吸收作用及其生长和生理生态响应[D]. 上海:华东理工大学, 2012.
    [52] 姚瑶, 黄立章, 陈少毅,许超,张云涛. 不同沉水植物对水体氮磷的净化效果[J]. 浙江农业科学, 2011 (4): 789-792.
    [53] 王庆海, 段留生, 李瑞华,武菊英. 几种水生植物净化能力比较[J]. 华北农学报, 2008, 23(2): 217-222.
    [54] 刘丹. 生物浮岛技术对八干渠景观水富营养化的修复效果研究[D]. 沈阳:沈阳建筑大学, 2012.
    [55] 赖闻玲, 胡菊芳, 陈章和. 四种挺水植物生理生态特性和污水净化效果研究[J]. 热带亚热带植物学报, 2010, 18(4):421-427.
    [56] Lenhart HA, Hunt WF, Burchell MR. Harvestable nitrogen accumulation for five storm water wetland plant species: trigger for storm water control measure maintenance[J]. J Environ Eng, 2012, 138(9): 972-978.
    [57] Kearney MA, Zhu W. Growth of three wetland plant species under single and multi-pollutant wastewater conditions[J]. Ecol Eng, 2012, 47: 214-220.
    [58] Clarke E, Baldwin AH. Responses of wetland plants to ammonia and water level[J]. Ecol Eng, 2002, 18(3): 257-264.
    [59] 汤仲恩, 种云霄, 朱文玲,吴启堂. 几种观赏型沉水植物对富营养化蓝绿藻类的抑制作用[J]. 生态环境, 2007, 16(6): 1637-1642.
    [60] 黄永杰, 刘登义, 王友保,王兴明,李晶. 八种水生植物对重金属富集能力的比较研究[J]. 生态学杂志, 2006, 25(5): 541-545
    [61] Dowty RA, Shaffer GP, Hester MW, Childers GW, Campo FM, Greene MC. Phytoremediation of small-scale oil spills in fresh marsh environments: a mesocosm simulation[J]. Mar Environ Res, 2001, 52(3): 195-211.
    [62] Lindau CW, Delaune RD. Vegetative response of Sagittaria lancifolia to burning of applied crude oil[J]. Water Air Soil Pollut, 2000, 121(1-4): 161-172.
    [63] Toth LA. Restoration response of relict broadleaf marshes to increased water depths[J]. Wetlands, 2010, 30(2): 263-274.
    [64] Toth LA. Unrealized expectations for restoration of a floodplain plant community[J]. Restor Ecol, 2010, 18(6): 810-819.
    [65] 陈丽丽, 何付丽, 范丹丹, 张明波, 李灼, 郭晓慧, 赵长山. 黑龙江省野慈姑对吡嘧磺隆的敏感性测定[J]. 植物保护, 2013, 39(6): 120-123.
    [66] Ash GJ, Chung YR, McKenzie C, Cother E. A phylogenetic and pathogenic comparison of potential biocontrol agents for weeds in the family Alismataceae from Australia and Korea[J]. Australas Plant Pathol, 2008, 37(4): 402-405.
    [67] Seal AN, Haig T, Pratley JE. Evaluation of putative allelochemicals in rice root exudates for their role in the suppression of arrowhead root growth[J]. J Chem Ecol, 2004, 30(8): 1663-1678.
    [68] Gibson KD, Breen JL, Hill JE, Caton BP, Foin TC. California arrowhead is a weak competitor in water-seeded rice[J]. Weed Sci, 2009, 49(3): 381-384.
    [69] Filizadeh Y, Farhadi E, Agahi K, Amini M, Younesi Z, Khangholi S. Competition of arrowhead in rice (Source: 22nd German Conference on Weed Biology and Weed Control, Stuttgart, Germany, March 2-4, 2004)[J]. Journal of Plant Diseases and Protection(JPDP), 2004, 19: 339-344.
    [70] 李林初. 矮慈姑的核型研究[J]. 上海农业学报, 1985, 1(3): 67-72.
    [71] 陈家宽, 孙祥钟, 王徽勤. 中国慈姑属植物的染色体研究初报[J]. 武汉大学学报:自然科学版, 1986(4): 108.
    [72] 王青锋, 王勇, 郭友好. 中国特有植物——腾冲慈姑(Sagittaria tengtsungensis H. Li)的核型研究[J]. 武汉植物学研究, 2001, 19(2): 169-170.
    [73] 陈乐. 泽泻科和花蔺科四种植物发育形态学研究(Alismataceae, Butomaceae)[D]. 哈尔滨:哈尔滨师范大学, 2012.
    [74] 王玉国, 王青锋, 陈家宽,袁秀平,孙坤. 冠果草的花部发育——兼论冠果草与近缘属的亲缘关系[J]. 武汉植物学研究, 1999, 17(2):158-162.
    [75] Huang LJ, Liu YC. Understanding diversity in leaf shape of Chinese Sagittaria (Alismataceae) by geometric tools[J]. Pak J Bot, 2014, 46(6): 1927-1934.
    [76] 梁士楚. Shannon信息系数在泽泻科分类中的应用[J]. 西南师范大学学报:自然科学版, 1990, 15(1): 76-83.
    [77] 陈家宽, 孙祥钟, 王徽勤. 中国慈姑属的特有种Sagittaria potamogetifolia的居群研究初报[J]. 武汉大学学报:自然科学版, 1986 (4):119-120.
    [78] 李伟,陈家宽,钟扬,黄德世. 世界慈姑属植物的数量分类研究[J].武汉大学学报:自然科学版, 1990(3): 102-108.
    [79] 黄德世, 钟扬, 陈家宽. 图论在中国慈姑属数量分类研究中的应用[J]. 武汉植物学研究, 1988, 6(4):405-406.
    [80] 杜光伟, 易清明, 陈家宽. 运用AP-PCR对中国慈姑属内亲缘关系的研究[J].植物分类学报, 1998, 36(3): 216-221.
    [81] 陈家宽, 孙祥钟, 王徽勤,钟扬,黄德世. 中国慈姑属的数量分类研究[J]. 武汉大学学报:自然科学版, 1988(1): 107-114.
    [82] 钟扬, 陈家宽. 中国慈姑属系统发育的研究[J]. 武汉植物学研究, 1992, 3: 243-248.
    [83] 梁士楚, 谢强. 中国泽泻科植物数量分类的研究[J]. 广西师范大学学报:自然科学版, 1989, 7(1):64-69.
    [84] 陈锦华, 汪小凡. 小慈姑克隆多样性与居群分化[J]. 华中农业大学学报, 2006, 25(2): 194-198.
    [85] 陈锦华, 汪小凡, 吕应堂. 矮慈姑自然居群的克隆生长格局[J]. 武汉大学学报:理学版, 2003, 49(4): 523-527.
    [86] Yakimowski SB, Barrett SCH. Clonal genetic structure and diversity in populations of an aquatic plant with combined vs. separate sexes[J]. Mol Ecol, 2014, 23(12): 2914-2928.
    [87] Edwards AL, Sharitz RR. Clonal diversity in two rare perennial plants: Sagittaria isoetiformis and Sagittaria teres (Alismataceae)[J]. Int J Plant Sci, 2003, 164(1): 181-188.
    [88] 陈锦华, 汪小凡, 梁述平. 矮慈姑一个自然居群的遗传多样性[J]. 华中农业大学学报, 2003, 22(4): 344-347.
    [89] 陈锦华, 孙爱珍, 汪小凡. 小慈姑的遗传多样性和居群分化[J]. 水生生物学报, 2006, 30(5): 570-577.
    [90] Chen JM, Gituru WR, Wang QF. A comparison of the extent of genetic variation in the endangered Sagittaria natans and its widespread congener S. trifolia[J]. Aquat Bot, 2007, 87(1): 1-6.
    [91] Edwards AL, Sharitz RR. Population genetics of two rare perennials in isolated wetlands: Sagittaria isoetiformis and S. teres (Alismataceae)[J]. Am J Bot, 2000, 87(8): 1147-1158.
    [92] Dorken ME, Barrett SCH. Chloroplast haplotype variation among monoecious and dioecious populations of Sagittaria latifolia (Alismataceae) in eastern North America[J]. Mol Ecol, 2004, 13(9): 2699-2707.
    [93] Liu F, Zhao SY, Li W, Wang QF. Population genetic structure and phylogeographic patterns in the Chinese endemic species Sagittaria lichuanensis, inferred from cpDNA atpB-rbcL intergenic spacers[J]. Botany, 2010, 88(10): 886-892.
    [94] Tan B, Liu K, Yue XL, Liu F, Chen JM, Wang QF. Chloroplast DNA variation and phylogeographic patterns in the Chinese endemic marsh herb Sa-gittaria potamogetifolia[J]. Aquat Bot, 2008, 89(4): 372-378.
    [95] Chen JM, Liu F, Wang QF, Motley TJ. Phylo-geography of a marsh herb Sagittaria trifolia (Alismataceae) in China inferred from cpDNA atpB-rbcL intergenic spacers[J]. Mol Phylogen Evol, 2008, 48(1): 168-175.
    [96] Wu ZH, Wang SZ, Hu JH, Li F, Ke WD, Ding Y. Development and characterization of microsatellite markers for Sagittaria trifolia var. sinensis ( Alismataceae)[J]. Am J Bot, 2011, 98(2): e36-8.
    [97] 陈家宽, 孙祥钟, 王徽勤. 湖北矮慈姑居群的初步研究[J]. 武汉大学学报:自然科学版, 1983(1):106-110.
    [98] 汪小凡. 中国泽泻科四属的花部综合特征及对传粉方式的适应性[J]. 武汉大学学报:理学版, 2001, 47(4): 385-392.
    [99] 李左栋, 刘静萱, 黄双全. 传粉生物学中几种花蜜采集和糖浓度测定方法的比较[J]. 植物分类学报, 2006, 44(3): 320-326.
    [100] 陶友保. 一种观察慈姑属植物花粉管“再分配”现象的优化方法[J]. 生物学通报, 2003, 38(7): 54-54.
    [101] 王金平, 赵立志. 慈姑雌花蜜腺的解剖学观察[J]. 信阳师范学院学报: 自然科学版, 2006, 19(3): 297-299.
    [102] 汪小凡, 王金平. 慈姑雌花在自然居群中的受粉过程——花粉粒落置、萌芽及花粉管生长的荧光显微观察[J]. 信阳师范学院学报:自然科学版, 1999, 12(3): 16.
    [103] 简永兴, 王徽勤. 湖北省泽泻科、水鳖科、眼子菜科及茨藻科植物花粉形态研究[J]. 武汉植物学研究, 1991,9 (1): 21-27.
    [104] 王金平. 矮慈姑人工授粉后花粉管生长的荧光显微观察[J]. 信阳师范学院学报:自然科学版, 1999, 12(2): 185-188.
    [105] 汪小凡, 陈家宽. 小慈姑的开花状态、传粉机制与交配系统[J]. 植物生态学报, 2001, 25(2):155-160.
    [106] 汪小凡, 陈家宽. 矮慈姑的传粉机制与交配系统[J]. 云南植物研究, 1999, 21(2):225-231.
    [107] 汪小凡, 陈家宽. 野慈姑自然群体异交率的定量估测[J]. 遗传, 2000, 22(5): 316-318.
    [108] 汪小凡, 陈家宽. 小慈姑自然居群异交率的定量估测[J]. 武汉大学学报:自然科学版, 1998(2): 217-220.
    [109] Dorken ME, Friedman J, Barrett SCH. The evolution and maintenance of monoecy and dioecy in Sagittaria latifolia (Alismataceae)[J]. Evolution, 2002, 56(1): 31-41.
    [110] 李婷, 覃道凤, 戴璨. 利用SSR荧光标记对野慈姑异交率的估测[J]. 植物科学学报,2015,33(4): 554-563.
    [111] 罗晓铮, 崔心红, 陈家宽, 何建农. 繁殖方式对矮慈姑生长的影响[J]. 武汉植物学研究, 2000, 18(2): 157-159.
    [112] Liu F, Chen JM, Wang QF. Tradeoffs between sexual and asexual reproduction in a monoecious species Sagittaria pygmaea (Alismataceae): the effect of different nutrient levels[J]. Plant Syst Evol, 2009, 277(1-2): 61-65.
    [113] Zou Y, Wang J. Vegetative and reproductive traits of Sagittaria trifolia (Alismataceae) in response to sediment heterogeneity and plant density[J]. Fundam Appl Limnol, 2010, 177(3): 197-208.
    [114] Zhang YW, Zhang LH, Zhao XN, Huang SJ, Zhao JM. Effects of tidal action on pollination and reproductive allocation in an estuarine emergent wetland plant-Sagittaria graminea ( Alismata ceae)[J]. PLoS ONE, 2013, 8(11): e78956.
    [115] Zhang LH, Zhang YW, Zhao XN, Huang SJ, Zhao JM, Yang YF. Effects of different nutrient sources on plasticity of reproductive strategies in a monoecious species, Sagittaria graminea ( Alismataceae)[J]. J Syst Evol, 2014, 52(1): 84-91.
    [116] Dorken ME, Barrett SCH. Phenotypic plasticity of vegetative and reproductive traits in monoecious and dioecious populations of Sagittaria latifolia (Alismataceae): a clonal aquatic plant[J]. J Ecol, 2004, 92(1): 32-44.
    [117] 黄双全, 宋旎, 汪泉, 唐璐璐, 汪小凡. 冠果草的性表达状态及其进化含义[J]. 植物学报:英文版, 2000, 42(11): 1108-1114.
    [118] Dorken ME, Barrett SCH. Gender plasticity in Sagittaria sagittifolia (Alismataceae), a monoecious aquatic species[J]. Plant Syst Evol, 2003, 237(1-2): 99-106.
    [119] Liu F, Yue XL, Chen JM, Wang QF. Gender modification in a monoecious species Sagittaria potamogetifolia (Alismataceae)[J]. Plant Ecol, 2008, 199(2): 217-223.
    [120] Liu F, Chen JM, Wang QF. Sizedependent sex allocation in a monoecious species Sagittaria pygmaea (Alismataceae)[J]. Ann Bot Fenn, 2009, 46(2): 95-100.
    [121] Sarkissian TS, Barrett SCH, Harder LD. Gender variation in Sagittaria latifolia (Alismataceae): is size all that matters?[J]. Ecology, 2001, 82(2): 360-373.
    [122] Han B, Wang XF, Huang SQ. Production of male flowers does not decrease with plant size in insectpollinated Sagittaria trifolia, contrary to predictions of sizedependent sex allocation[J]. J Syst Evol, 2011, 49(5): 379-385.
    [123] Huang SQ, Sun SG, Takahashi Y, Guo YH. Gender variation of sequential inflorescences in a monoecious plant Sagittaria trifolia ( Alismata ceae)[J]. Ann Bot, 2002, 90(5): 613-622.
    [124] Klinkhamer PGL, deJong TJ, Metz H. Sex and size in cosexual plants[J]. Trends Ecol Evol, 1997, 12: 260-265.
    [125] Van Drunen WE, Dorken ME. Tradeoffs between clonal and sexual reproduction in Sagittaria latifolia (Alismataceae) scale up to affect the fitness of entire clones[J]. New Phytol, 2012, 196(2): 606-616.
    [126] Yakimowski SB, Barrett SCH. Variation and evolution of sex ratios at the northern range limit of a sexually polymorphic plant[J]. J Evol Biol, 2014, 27(7): 1454-1466.
    [127] Wang X, Zhou W, Lu J, Wang HB, Xiao C, Xia J, Liu GH. Effects of population size on synchronous display of female and male flowers and reproductive output in two monoecious Sagittaria species[J]. PLoS ONE, 2012, 7(10): e48731.
    [128] Darwin CR. On the Origin of Species by Means of Natural Selection[M]. London: Murray, 1859.
    [129] Geber MA, Dawson TE, Delph LF, eds. Gender and Sexual Dimorphism in Flowering Plants[M]. Berlin: Springer, 1998.
    [130] Dai C. Sexual selection in a hermaphroditic plant[D]. Ph.D. Dissertation. School of Arts and Sciences, University of Virginia, USA,2011.
    [131] 黄双全, 靳宝锋,王青锋,郭友好. 慈姑花的开放式样及其花粉流[J]. 植物学报, 1999, 41(7): 726-730.
    [132] Huang SQ, Tang LL, Sun JF, Lu Y. Pollinator response to female and male floral display in a monoecious species and its implications for the evolution of floral dimorphism[J]. New Phytol, 2006, 171(2): 417-424.
    [133] Glaettli M, Barrett SCH. Pollinator responses to variation in floral display and flower size in dioecious Sagittaria latifolia (Alismataceae)[J]. New Phytol, 2008, 179(4): 1193-1201.
    [134] Yakimowski SB, Glaettli M, Barrett SCH. Floral dimorphism in plant populations with combined versus separate sexes[J]. Ann Bot, 2011, 108(4): 765-776.
    [135] Huang SQ. Flower dimorphism and the maintenance of andromonoecy in Sagittaria guyanensis ssp. lappula (Alismataceae)[J]. New Phytol, 2003, 157(2): 357-364.
    [136] Wright VL, Dorken ME. Sexual dimorphism in leaf nitrogen content but not photosynthetic rates in Sagittaria latifolia (Alismataceae)[J]. Botany, 2014, 92(2): 109-112.
    [137] Vamosi JC, Vamosi SM, Barrett SCH. Sex in advertising: dioecy alters the net benefits of attractiveness in Sagittaria latifolia (Alismataceae)[J]. Proc R Soc B: Biol Sci, 2006, 273(1599): 2401-2407.
    [138] Dorken ME, Barrett SCH. Sex determination and the evolution of dioecy from monoecy in Sagitta ria latifolia (Alismataceae)[J]. Proc R Soc London B: Biol Sci, 2004, 271(1535): 213-219.
    [139] Dorken ME, Mitchard ETA. Phenotypic plasticity of hermaphrodite sex allocation promotes the evolution of separate sexes: an experimental test of the sexdifferential plasticity hypothesis using Sagittaria latifolia (Alismataceae) [J]. Evolution, 2008, 62(4): 971-978.
    [140] Perry LE, Dorken ME. The evolution of males: support for predictions from sex allocation theory using mating arrays of Sagittaria latifolia ( Alisma taceae)[J]. Evolution, 2011, 65(10): 2782-2791.
    [141] Dorken ME, Barrett SCH. Lifehistory differentiation and the maintenance of monoecy and dioecy in Sagittaria latifolia (Alismataceae)[J]. Evolution, 2003, 57(9): 1973-1988.
  • 期刊类型引用(2)

    1. 王强,杨鸿淋,徐春晖,杨玉莲,屈巧欣,康四岚,李佳芯,吴庆贵. 涪江中游4种造林树种碳氮磷化学计量及养分重吸收特征. 四川农业大学学报. 2023(03): 437-445 . 百度学术
    2. 杨欢,何学敏,热依汗·阿布力孜,李进宝,胡其荣,巴合别勒德. 小叶碱蓬和白麻土壤—叶片生态化学计量学特征对不同盐生境的响应. 水土保持通报. 2023(05): 45-52 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  1529
  • HTML全文浏览量:  1
  • PDF下载量:  1833
  • 被引次数: 4
出版历程
  • 收稿日期:  2015-06-17
  • 修回日期:  2015-07-22
  • 发布日期:  2015-10-27

目录

    /

    返回文章
    返回