Development Process of Pistils and Stamens and Effect of Endogenous Hormone Content on Style Growth in Plumbago auriculata Lam. with Distyly
-
摘要: 为了解二型花雌、雄蕊发育进程及内源激素对长、短花柱生长发育的影响,以蓝花丹(Plumbago auriculata Lam.)为材料,观察分析了长花柱(L型)、短花柱(S型)花朵内雌、雄蕊的发育特征,并分别检测了L、S型花柱中的内源激素水平。结果显示:蓝花丹雌、雄蕊发育进程基本符合逻辑斯蒂变化曲线,并可划分为5个时期,即T1初始发育期、T2转折期(一)、T3快速发育期、T4转折期(二)、T5平稳发育期;在整个发育进程中,L型花朵中雌蕊的生长速率始终高于雄蕊;S型花朵中雌蕊的生长速率在T3期由快转慢,导致T3~T5期雌蕊的生长速率始终低于雄蕊,从而形成了雌蕊低于雄蕊的短花柱特征。这说明花柱的分化是在二型花雌、雄蕊快速发育的T3期开始出现,并逐渐形成花柱异长植物最显著的花部形态特征。IAA、IPA和GA含量均在T1~T3期增加、T4~T5期降低,且在L型花柱中的含量始终高于S型,而ABA含量的变化趋势与这3种生长促进类激素相反,说明在蓝花丹花柱发育过程中,IAA、IPA和GA可能参与调控花柱的伸长生长,而ABA主要在发育后期促使花柱成熟。Abstract: To research the development processes in Plumbago auriculata Lam., a typical plant with distyly, the lengths of pistils and stamens and endogenous hormone levels in styles were measured. The development process of pistils and stamens could be divided into five developmental stages:inchoate development stage (T1), turning stage (a) (T2), rapid development stage (T3), turning stage (b) (T4) and smooth development stage (T5). During the whole development process, the growth speed of pistils was always faster than that of the stamens in long-styled flowers. The growth speed of pistils in short-styled flowers was faster than that of the stamens at T1-T2 stages, but slower at T3-T5 stages, which explains why short-styled flowers had shorter pistils. The differentiation between long-and short-styled flowers appeared at the T3-T5 stages, and led to the most obvious feature in flowers of plants with distyly. The contents of IAA, IPA and GA in long-styles were higher than those in short-styles, and were all increased at the T1-T3 stages, but reduced in the T4-T5 stages. In contrast, ABA content was increased at the T4 stages. During style development in P. auriculata, IAA, IPA and GA appeared to have a positive influence on style development, but ABA had a negative influence.
-
Keywords:
- Endogenous hormones /
- Plumbago auriculata Lam. /
- Distyly /
- Development process
-
-
[1] 张硕, 高素萍. 蓝花丹的花部形态二态性及自交不亲和特性[J]. 广西植物, 2014, 34(6):747-753. Zhang S, Gao SP. Distyly and selfing incompatibility of Plumbago auriculata[J]. Guihaia, 2014, 34(6):747-753.
[2] Kaori KT, Tatsuo K. Cytokinin receptors in sporophytes are essential for male and female functions in Arabidopsis thaliana[J]. Plant Signal Behav, 2011, 6(1):66-71.
[3] Valentina C, Maria MA, Giuseppina F, Paolo C, Maura C. Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation[J]. Plant Cell, 2008, 20(7):1760-1774.
[4] 黄洁, 李鑫波, 严海龙, 陈丹, 孙蒙祥, 彭雄波. 快速筛选拟南芥受精和早期胚胎发生相关基因的方法[J]. 植物科学学报, 2015, 33(4):564-571. Huang J, Li XB, Yan HL, Chen D, Sun MX, Peng XB. A convenient method for screening genes related to fertilization and embryogenesis in Arabidopsis[J]. Plant Science Journal, 2015, 33(4):564-571.
[5] Plackett ARG, Thomas SG, Wilson ZA, Peter H. Gibberellin control of stamen development:a fertile field[J]. Trends Plant Sci, 2011, 16(10):568-578.
[6] Chen LG, Song Y, Li SJ, Zhang LP, Zou CS, Yu DQ. The role of WRKY transcription factors in plant abiotic stresses[J]. BBA-Gene Regul Mech, 2012, 2(2):120-128.
[7] 马书荣, 祖元刚. 长春花叶片内源激素及黄酮与花芽分化的关系[J]. 东北林业大学学报, 2009, 37(5):72-73. Ma SR, Zu YG. Correlations of endogenous hormones and flavonoids and flower bud differentiation in leaves in Catharanthus roseus[J]. Journal of Northeast Forestry University, 2009, 37(5):72-73.
[8] 张姝媛. 丁香属两种植物花芽分化形态发育及其生理基础的研究[D]. 呼和浩特:内蒙古农业大学, 2008. Zhang SY. Study on morphological and basic physiological evolution of floral bud differentiation in two kinds of Syringa spp.[D]. Hohhot:Inner Mongolia Agricultural University, 2008.
[9] 高素萍, 张硕, 吴佩纹. 二型植物蓝花丹开花物候特征观察及其生态意义分析[J]. 植物资源与环境学报, 2015(1):84-90. Gao SP, Zhang S, Wu PW. Observation on flowering phenological characteristics of two type plants of Plumbago auriculata and analysis on its ecological significance[J]. Journal of Plant Resources and Environment, 2015(1):84-90.
[10] Chen Y, Gao S. Preliminary report of PGR's influence to multiple shoots induction and plant regeneration on Plumbago auriculata[J]. Am J Plant Sci, 2013, 4(5):23-29.
[11] Jyoti D, Dinesh L, Kalaiselvi S, et al. In vitro callus induction and estimation of plumbagin content from Plumbago auriculata Lam.[J]. Indian J Exp Biol, 2014, 52(52):1122-1127.
[12] Zong S, Scott L. Study on summerwood cutting propagation of Plumbago auriculata[J]. J Exp Bot, 2014, 54(2):25-27.
[13] Galal AM, Raman V, Avula B, Wang YH, Rumalla CS, Weerasooriya AD, Khan IA. Comparative study of three Plumbago L. species (Plumbaginaceae) by microscopy, UPLC-UV and HPTLC[J]. J Nat Med, 2013, 67(3):554-561.
[14] 赵志惠. 蓝花丹(Plumbago auriculata)生物学特性初步研究[D]. 成都:四川农业大学, 2012. Zhao ZH. Preliminary studies on biological characteristics of Plumbago auriculata[D]. Chengdu:Sichuan Agricultural University, 2012.
[15] 李刚, 赵静, 何素平, 邓艾兴, 李召虎, 何钟佩, 赵环环, 王保民. 甘草酸多克隆抗体的制备及ELISA方法建立[J]. 时珍国医国药, 2011, 22(12):2956-2958. Li G, Zhao J, He SP, Deng AX, Li ZH, He ZP, Zhao HH, Wang BM. Preparation of glycyrrhizinic acid polyclonal antibody and development of ELISA for glycyrrhizinic acid detection[J]. Lishizhen Medicine and Materia Medica Research, 2011, 22(12):2956-2958.
[16] 张锁科. 草地早熟禾发生分蘖时内源激素调控研究[D]. 兰州:甘肃农业大学, 2014. Zhang SK. Study on regulation of tillering occuring with endogenous hormone in Kentucky bluegrass[D]. Lanzhou:Gansu Agricultural University, 2014.
[17] 李艳芳. 内源激素与黄檗种子休眠解除的相关性研究[D]. 北京:北京协和医学院, 2014. Li YF. The correlation research on endogenous hormones and seed dormancy release of Phellodendron amurense Rupr.[D]. Beijing:Beijing Union Medical College, 2014.
[18] Sauer M, Robert S, Kleine-Vehn J. Auxin:simply complicated[J]. J Exp Bot, 2013, 64(9):2565-2577.
[19] Atsuko S, Shu S, Jun M, Yamamoto KT. Negative phototropism is seen in Arabidopsis inflorescences when auxin signaling is reduced to a minimal level by an Aux/IAA dominant mutation, axr2[J]. Plant Signal Behav, 2015, 10(3):e990838.
[20] 李水根. 落叶松IAA受体基因分离与干细胞极性相关miR166及其目标基因功能研究[D]. 中国林业科学研究院, 2013. Li SG. Isolation of IAA receptors and functional analysis of embryogenic polarity-related miR166 and its targets in larch[D]. Beijing:Chinese Academy of Forestry, 2013. [21] Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jürgens G, Alonso JM. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development[J]. Cell, 2008, 133(1):177-191.
[22] Sedeer ES, Raili R, Helariutta Y. Crossing paths:cytokinin signalling and crosstalk[J]. Development, 2013, 140(7):1373-1383.
[23] Bartrina I, Otto E, Strnad M, Werner T, Schmulling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana[J]. Plant Cell, 2011, 23(1):69-80
[24] Bencivenga S, Simonini S, Benkova E, Colombo L. The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis[J]. Plant Cell, 2012, 24(7):2886-2897.
[25] Reyes-Olalde JI, Zuniga-Mayo VM, Chavez Montes RA, Marsch-Martinez N, de Folter S. Inside the gynoecium:at the carpel margin[J]. Trends Plant Sci, 2013, 18(11):644-655.
[26] 雷霆. 温度、激素与活性氧(氮)在解除天彭牡丹种子休眠中的作用[D]. 成都:四川农业大学, 2014. Lei T. The roles of temperature, hormones and reactive oxygen (nitrogen) in releasing seed dormancy of tree peony (Paeonia suffruticosa ‘Tianpeng’)[D]. Chengdu:Sichuan Agricultural University, 2014.
[27] Kakimoto T, Kinoshita-Tsujimura K. Cytokinin receptors in sporophytes are essential for male and female functions in Arabidopsis thaliana[J]. Plant Signal Behav, 2011, 6(1):66-71.
[28] Song SS, Qi TC, Huang H, Wu DW, Peng W, Peng JR. The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis[J]. Plant Cell, 2011, 23(3):1000-1013.
[29] 孙会军, 雷家军. 赤霉素对君子兰花期调控的研究[J]. 北方园艺, 2008(4):172-174. Sun HJ, Lei JJ. Study on flowering-time regulation of Clivia miniata Regel with gibberellin treatment[J]. Northern Horticulture, 2008(4):172-174.
[30] Zhang D, Ren L, Yue JH, Wang L, Zhuo LH, Shen XH. GA4 and IAA were involved in the morphogenesis and development of flowers in Agapanthus praecox ssp. orientalis[J]. J Plant Physiol, 2014, 171(11):966-976.
[31] Zúñiga-Mayo VM, Reyes-Olalde JI, Marsch-Martinez N, de Folter S. Cytokinin treatments affect the apical-basal patterning of the Arabidopsis gynoecium and resemble the effects of polar auxin transport inhibition[J]. Front Plant Sci, 2014, 5(19):191-191.
[32] 李坤, 王鲜萍, 杨凤博, 许守明. MAPK级联途径参与ABA信号转导调节的植物生长发育过程[J]. 植物科学学报, 2014, 32(5):531-539. Li K, Wang XP, Yang FB, Xu SM. Roles of mitogen-activated protein kinase cascades in ABA signaling regulation of plant development[J]. Plant Science Journal, 2014, 32(5):531-539.
[33] Luo X, Yi J, Zhong XH, Lian QL, Khan MA, Cao X, Li XX, Gao MW, Wu J, Chen J, Yi MF. Cloning, characte-rization and expression analysis of key genes involved in ABA metabolism in Gladiolus cormels during storage[J]. Sci Hortic, 2012(143):115-121.
-
期刊类型引用(1)
1. 蔡奕,舒骏生,谢咏红. 极小野生种群绒毛皂荚的社会认知与扩展. 湖南林业科技. 2023(05): 99-104 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 1273
- HTML全文浏览量: 0
- PDF下载量: 1065
- 被引次数: 1