Advances in Single-Cell Technology and Their Application in Plant Research
-
摘要: 多细胞生物体的生存依赖于不同类型细胞特异性的功能分工,不同类型的细胞尽管基因组相同,但有其独特的发育过程和应对环境变化的能力。生物学的一大挑战就是揭示基因如何在正确的位置、正确的时间表达到正确的水平,最近出现了很多通过细胞类型特异性方法研究单细胞组学的工具,这些新技术使我们能通过空前分辨率,理解多细胞生物体内不同类型的单个细胞基因表达特点及其适应环境变化的机制。单细胞样品的获取一直是单细胞研究的一大技术瓶颈,因此本文将以如何获得起始材料为重点,探讨单细胞研究的样品标记、单细胞分离及获取、组学数据分析和结果验证等技术方法及其在植物研究中的应用。Abstract: The survival of multicellular organisms depends on the functional division of different types of cells. Although specific cell types share the same genome, they have unique developmental programs, as well as different abilities to play their role during development and respond to environmental variation. Thus, a key challenge in biology is to understand how genes are expressed in the right cells at the right time and at the right level. Recently, many novel tools have been developed for single-cell-omics research using cell-type-specific methods. These innovations enable us to understand the mechanisms of gene regulation in single cells and their adaptation to environmental changes with unprecedented resolution. The isolation of single-cell samples has long been a bottleneck to relevant study; however, there are some useful techniques available. In this paper, we discuss techniques for sample labeling, isolation and collection of single cells, -omics data analysis and validation for single-cell analysis, and their application for plant research.
-
-
[1] Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of single-cell RNA sequencing[J]. Mol Cell, 2015, 58: 610-620.
[2] Fujii T, Matsuda S, Tejedor ML, Esaki T, Sakane I, Mizuno H, Tsuyama N, Masujima T. Direct metabolomics for plant cells by live single-cell mass spectrometry[J]. Nat Protoc, 2015, 10: 1445-1456.
[3] Gong X, Zhao Y, Cai S, Fu S, Yang C, Zhang S, Zhang X. Single cell analysis with probe ESI-mass spectrometry: detection of metabolites at cellular and subcellular levels[J]. Anal Chem, 2014, 86: 3809-3816.
[4] Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161: 1187-1201.
[5] Macosko EZ, Basu A, Satija R, Nemesh J, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161: 1202-1214.
[6] Keller PJ, Ahrens MB. Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy[J]. Neuron, 2015, 85: 462-483.
[7] Pan X. Single cell analysis: from technology to biology and medicine[J]. Single Cell Biol, 2014, 3: 106.
[8] Zenobi R. Single-cell metabolomics: analytical and biolo-gical perspectives[J]. Science, 2013, 342: 1243259.
[9] Li Y, Zhang S, Wang L, Xiao R, Liu W, Zhang X, Zhou Z, Amatore C, Huang W. Nanoelectrode for amperometric monitoring of individual vesicular exocytosis inside single synapses[J]. Angew Chem Int Ed, 2014, 53: 12456-12460.
[10] Li Y, Zhang S, Wang X, Zhang X, Oleinick A, Svir I, Amatore C, Huang W. Real-time monitoring of discrete synaptic release events and excitatory potentials within self-reconstructed neuro-muscular junctions[J]. Angew Chem Int Ed, 2015, 54: 9313-9318.
[11] Ni X, Zhuo M, Su Z, Duan J, et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients[J]. Proc Natl Acad Sci USA, 2013, 110: 21083-21088.
[12] Lv S, Wang J, Xie M, Lu N, Li Z, Yan X, Cai S, Zhang P, Dong W, Huang W. Photoresponsive immunomagnetic nanocarrier for capture and release of rare circulating tumor cells[J]. Chem Sci, 2015, 6: 6432-6438.
[13] Kolodziejczyk AA, Kim JK, Tsang JC, Ilicic T, et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation[J]. Cell Stem Cell, 2015, 17: 471-485.
[14] Yan L, Yang M, Guo H, Yang L, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells[J]. Nat Struct Mol Biol, 2013, 20: 1131-1139.
[15] Evrard A, Bargmann BO, Birnbaum KD, Tester M, Baumann U, Johnson AA. Fluorescence-activated cell sorting for analysis of cell type-specific responses to salinity stress in Arabidopsis and rice[J]. Methods Mol Biol, 2012, 913: 265-76.
[16] Lu T, Zhu C, Lu G, Guo Y, Zhou Y, Zhang Z, Zhao Y, Li W, Lu Y, Tang W, Feng Q, Han B. Strand-specific RNA-seq reveals widespread occurrence of novel cis-natural antisense transcripts in rice[J]. BMC Genomics, 2012, 13: 721.
[17] Berendzen KW, Böhmer M, Wallmeroth N, Peter S, Vesic' M, Zhou Y, Tiesler FK, Schleifenbaum F, Harter K. Screening for in planta protein-protein interactions combining bimolecular fluorescence complementation with flow cytometry[J]. Plant Methods, 2012, 8: 25.
[18] Torti S, Fornara F, Vincent C, Andrés F, Nordström K, Göbel U, Knoll D, Schoof H, Coupland G. Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering[J]. Plant Cell, 2012, 24: 444-462.
[19] Liu Y, Li X, Zhao J, Tang X, Tian S, Chen J, Shi C, Wang W, Zhang L, Feng X, Sun MX. Direct evidence that suspensor cells have embryogenic potential that is suppressed by the embryo proper during normal embryoge-nesis[J]. Proc Natl Acad Sci USA, 2015, 112: 12432-12437.
[20] Ma L, Xin H, Qu L, Zhao J, Yang L, Zhao P, Sun M. Transcription profile analysis reveals that zygotic division results in uneven distribution of specific transcripts in apical/basal cells of tobacco[J]. PLoS ONE, 2011, 6: e15971.
[21] Coker TL, Cevik V, Beynon JL, Gifford ML. Spatial dissection of the Arabidopsis thaliana transcriptional response to downy mildew using fluorescence activated cell sorting[J]. Front Plant Sci, 2015, 6: 527.
[22] Terashima M, Freeman ES, Jinkerson RE, Jonikas MC. A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants[J]. Plant J, 2015, 81: 147-159.
[23] Handley A, Schauer T, Ladurner AG, Margulies CE. Designing cell-type-specific genome-wide experiments[J]. Mol Cell, 2015, 58: 621-631.
[24] Rodríguez AV, Didiano D, Desplan C. Power tools for gene expression and clonal analysis in Drosophila[J]. Nat Methods, 2011, 9: 47-55.
[25] Huang ZJ, Zeng H. Genetic approaches to neural circuits in the mouse[J]. Annu Rev Neurosci, 2013, 36: 183-215.
[26] Weber T, Köster R. Genetic tools for multicolor imaging in zebrafish larvae[J]. Methods, 2013, 62: 279-291.
[27] Birnbaum K, Jung JW, Wang JY, Lambert GM, Hirst JA, Galbraith DW, Benfey PN. Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines[J]. Nat Methods, 2005, 2: 615-619.
[28] Gross A, Schoendube J, Zimmermann S, Steeb M, Zengerle R, Koltay P. Technologies for single-cell isolation[J]. Int J Mol Sci, 2015, 16: 16897-16919.
[29] Moldavan A. Photo-electric technique for the counting of microscopical cells[J]. Science, 1934, 80: 188-189.
[30] Gucker FT Jr, O'Konski CT. A photoelectronic counter for colloidal particles[J]. J Am Chem Soc, 1947, 69: 2422-2431.
[31] Fulwyler MJ. Electronic separation of biological cells by volume[J]. Science, 1965, 150: 910-911.
[32] Shapiro HM. Practical Flow Cytometry[M]. 4th ed. Hoboken: John Wiley & Sons, 2003.
[33] Herzenberg LA, Parks D, Sahaf B, Perez O, Roederer M, Herzenberg LA. The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford[J]. Clin Chem, 2002, 48: 1819-1827.
[34] Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA. Laser capture microdissection[J]. Science, 1996, 274: 998-1001.
[35] Vogel A, Noack J, Hüttman G, Paltauf G. Mechanisms of femtosecond laser nanosurgery of cells and tissues[J]. Appl Phys B, 2005, 81: 1015-1047.
[36] Vogel A, Lorenz K, Horneffer V, Hüttmann G, von Smolinski D, Gebert A. Mechanisms of laser-induced dissection and transport of histologic specimens[J]. Biophys J, 2007, 93: 4481-4500.
[37] Esposito G. Complementary techniques: laser capture microdissection-increasing specificity of gene expression profiling of cancer specimens[J]. Adv Exp Med Biol, 2007, 593: 54-65.
[38] Nakamura N, Ruebel K, Jin L, Qian X, Zhang H, Lloyd RV. Laser capture microdissection for analysis of single cells[J]. Methods Mol Med, 2007, 132: 11-18.
[39] Keays KM, Owens GP, Ritchie AM, Gilden DH, Burgoon MP. Laser capture microdissection and single-cell RT-PCR without RNA purification[J]. J Immunol Methods, 2005, 302: 90-98.
[40] Vandewoestyne M, Deforce D. Laser capture microdissection in forensic research: a review[J]. Int J Legal Med, 2010, 124: 513-521.
[41] Decarlo K, Emley A, Dadzie OE, Mahalingam M. Laser capture microdissection: methods and applications[J]. Methods Mol Biol, 2011, 755: 1-15.
[42] Goding JW. Antibody production by hybridomas[J]. J Immunol Methods, 1980, 39: 285-308.
[43] Fuller SA, Takahashi M, Hurrell JGR. Cloning of hybridoma cell lines by limiting dilution[J]. Curr Protoc Mol Biol, 2001. DOI: 10.1002/0471142727.mb1108s01.
[44] Yokoyama WM, Christensen M, Dos Santos G, Miller D, Ho J, Wu T, Dziegelewski M, Neethling FA. Production of monoclonal antibodies[J]. Curr Protoc Immunol, 2013. DOI: 10.1002/0471142735.im0205s102.
[45] Staszewski R. Cloning by limiting dilution: an improved estimate that an interesting culture is monoclonal[J]. Yale J Biol Med, 1984, 57: 865-868.
[46] Fröhlich J, König H. New techniques for isolation of single prokaryotic cells[J]. FEMS Microbiol Rev, 2000, 24: 567-572.
[47] Brehm-Stecher BF, Johnson EA. Single-cell microbiology: tools, technologies, and applications[J]. Microbiol Mol Biol Rev, 2004, 68: 538-559.
[48] Wright G, Tucker MJ, Morton PC, Sweitzer-Yoder CL, Smith SE. Micromanipulation in assisted reproduction: a review of current technology[J]. Curr Opin Obstet Gynecol, 1998, 10: 221-226.
[49] Li CX, Wang GQ, Li WS, Huang JP, Ji AQ, Hu L. New cell separation technique for the isolation and analysis of cells from biological mixtures in forensic caseworks[J]. Croat Med J, 2011, 52: 293-298.
[50] 何玉池, 曲良焕, 孙蒙祥, 杨弘远. 以单细胞压片技术观察烟草(Nicotiana tabacum L.)合子细胞器DNA的分布[J]. 武汉植物学研究, 2005, 23(1): 63-67. He YC, Qu LH, Sun MX, Yang HY. A single-cell-squashing technique for observation of organelle DNA distribution in tobacco zygotes[J]. Journal of Wuhan Botanical Research, 2005, 23(1): 63-67.
[51] 赵婧, 孙蒙祥. 外源生长素对烟草(Nicotiana tabacum L.)小孢子早期胚胎发生的影响[J]. 武汉植物学研究, 2005, 23 (6): 519-523. Zhao J, Sun MX. Influence of exogenous auxin on microspore embryogenesis in tobacoo[J]. Journal of Wuhan Botanical Research, 2005, 23(6): 519-523.
[52] Lecault V, White AK, Singhal A, Hansen CL. Microfluidic single cell analysis: from promise to practice[J]. Curr Opin Chem Biol, 2012, 16: 381-390.
[53] Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML. Droplet microfluidic technology for single-cell high-throughput screening[J]. Proc Natl Acad Sci USA, 2009, 106: 14195-14200.
[54] Gómez-Sjöberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR. Versatile, fully automated, microfluidic cell culture system[J]. Anal Chem, 2007, 79: 8557-8563.
[55] Di Carlo D, Wu LY, Lee LP. Dynamic single cell culture array[J]. Lab Chip, 2006, 6: 1445-1449.
[56] Edd JF, Di Carlo D, Humphry KJ, Köster S, Irimia D, Weitz DA, Toner M. Controlled encapsulation of single-cells into monodisperse picolitre drops[J]. Lab Chip, 2008, 8: 1262-1264.
[57] Zhang K, Han X, Li Y, Li SY, Zu Y, Wang Z, Qin L. Hand-held and integrated single-cell pipettes[J]. J Am Chem Soc, 2014, 136: 10858-10861.
[58] Ateya DA, Erickson JS, Howell PB Jr, Hilliard LR, Golden JP, Ligler FS. The good, the bad, and the tiny: a review of microflow cytometry[J]. Anal Bioanal Chem, 2008, 391: 1485-1498.
[59] Du G, Fang Q, den Toonder JM. Microfluidics for cell-based high throughput screening platforms-A review[J]. Anal Chim Acta, 2016, 903: 36-50.
[60] Wu Z, Chen Y, Wang M, Chung A. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures[J]. Lab Chip, 2016, 16(3): 532-542.
[61] Davison M, Hall E, Zare R, Bhaya D. Challenges of metagenomics and single-cell genomics approaches for exploring cyanobacterial diversity[J]. Photosynth Res, 2015, 126: 135-146.
[62] Zhang Z, Wei L, Zou X, Tao Y, Liu Z, Zheng Y. Submergence-responsive MicroRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells[J]. Ann Bot, 2008, 102: 509-519.
[63] Grossmann G, Guo WJ, Ehrhardt DW, Frommer WB, Sit RV, Quake SR, Meier M. The RootChip: an integrated microfluidic chip for plant science[J]. Plant Cell, 2011, 23: 4234-4240.
[64] Busch W, Moore BT, Martsberger B, Mace DL, Twigg RW, Jung J, Pruteanu-Malinici I, Kennedy SJ, Fricke GK, Clark RL, Ohler U, Benfey PN. A microfluidic device and computational platform for high-throughput live imaging of gene expression[J]. Nat Methods, 2012, 9: 1101-1106.
[65] Lanquar V, Grossmann G, Vinkenborg JL, Merkx M, Thomine S, Frommer WB. Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology[J]. New Phytol, 2014, 202: 198-208.
[66] Nezhad AS, Packirisamy M, Geitmann A. Applications of microfluidics for studying growth mechanisms of tip gro-wing pollen tubes[J]. Conf Proc IEEE Eng Med Biol Soc, 2014, 2014: 6175-6178.
[67] Agudelo CG, Packirisamy M, Geitmann A. Lab-on-a-chip for studying growing pollen tubes[J]. Methods Mol Biol, 2014, 1080: 237-248.
[68] Ghanbari M, Nezhad AS, Agudelo CG, Packirisamy M, Geitmann A. Microfluidic positioning of pollen grains in lab-on-a-chip for single cell analysis[J]. J Biosci Bioeng, 2014, 117: 504-511.
[69] Nezhad AS, Ghanbari M, Agudelo CG, Naghavi M, Packirisamy M, Bhat RB, Geitmann A. Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis[J]. Biomed Microdevices, 2014, 16: 23-33.
[70] Ju J, Ko J, Kim S, Baek J, Cha H, Lee S. Soft material-based microculture system having air permeable cover sheet for the protoplast culture of Nicotiana tabacum[J]. Bioprocess Biosyst Eng, 2006, 29: 163-168.
[71] Ko J, Ju J, Lee S, Cha H. Tobacco protoplast culture in a polydimethylsiloxane-based microfluidic channel[J]. Protoplasma, 2006, 227: 237-240.
[72] Chang WH, Yang SY, Lin CL, Wang CH, Li PC, Chen TY, Jan FJ, Lee GB. Detection of viruses directly from the fresh leaves of a Phalaenopsis orchid using a microfluidic system[J]. Nanomedicine, 2013, 9: 1274-1282.
[73] Lin CL, Chang WH, Wang CH, Lee CH, Chen TY, Jan FJ, Lee GB. A microfluidic system integrated with buried optical fibers for detection of Phalaenopsis orchid pathogens[J]. Biosens Bioelectron, 2015, 63: 572-579.
[74] Qu B, Eu YJ, Jeong WJ, Kim DP. Droplet electroporation in microfluidics for efficient cell transformation with or wi-thout cell wall removal[J]. Lab Chip, 2012, 12: 4483-4488.
[75] Ai X, Liang Q, Luo M, Zhang K, Pan J, Luo G. Controlling gas/liquid exchange using microfluidics for real-time monitoring of flagellar length in living Chlamydomonas at the single-cell level[J]. Lab Chip, 2012, 12: 4516-4522.
[76] Wang J, Sun J, Song Y, Xu Y, Pan X, Sun Y, Li D. A label-free microfluidic biosensor for activity detection of single microalgae cells based on chlorophyll fluorescence[J]. Sensors-Basel, 2013, 13: 16075-16089.
[77] Park JW, Na SC, Nguyen TQ, Paik SM, Kang M, Hong D, Choi IS, Lee JH, Jeon NL. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research[J]. Biotechnol Bioeng, 2015, 112: 494-501.
[78] Liu J, Hu L, Liu Y, Chen R, Cheng Z, Chen S, Amatore C, Huang W, Huo K. Real-time monitoring of auxin vesicular exocytotic efflux from single plant protoplasts by amperometry at microelectrodes decorated with nanowires[J]. Angew Chem Int Ed, 2014, 53: 2643-2647.
[79] Ai F, Chen H, Zhang S, Liu S, Wei F, Dong X, Cheng J, Huang W. Real-time monitoring of oxidative burst from single plant protoplasts using microelectrochemical sensors modified by platinum nanoparticles[J]. Anal Chem, 2009, 81: 8453-8458.
[80] Sanati NA. Microfluidic platforms for plant cells studies[J]. Lab Chip, 2014, 14: 3262-3274.
[81] Gaurav V, Kolewe ME, Roberts SC. Flow cytometric me-thods to investigate culture heterogeneities for plant metabolic engineering[J]. Methods Mol Biol, 2010, 643: 243-262.
[82] Borges F, Gardner R, Lopes T, Calarco JP, Boavida LC, Slotkin RK, Martienssen RA, Becker JD. FACS-based purification of Arabidopsis microspores, sperm cells and vegetative nuclei[J]. Plant Methods, 2012, 8: 44.
[83] Weinhofer I, Köhler C. Endosperm-specific chromatin profiling by fluorescence-activated nuclei sorting and ChIP-on-chip[J]. Methods Mol Biol, 2014, 1112: 105-115.
[84] 汪艳, 肖媛, 刘伟, 李婷婷, 胡锐, 乔志仙. 流式细胞仪检测高等植物细胞核DNA含量的方法[J]. 植物科学学报, 2015, 33 (1): 126-131. Wang Y, Xiao Y, Liu W, Li TT, Hu R, Qiao ZX. Operation skills of flow cytometer for detecting nuclear DNA contents in higher plant cells[J]. Plant Science Journal, 2015, 33 (1): 126-131.
[85] Wolf PG, Karol KG, Mandoli DF, Kuehl J, Arumuganathan K, Ellis MW, Mishler BD, Kelch DG, Olmstead RG, Boore JL. The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodia-ceae)[J]. Gene, 2005, 350: 117-128.
[86] Bargmann BO, Birnbaum KD. Fluorescence activated cell sorting of plant protoplasts[J]. J Vis Exp, 2010, 36: 1673.
[87] Grønlund JT, Eyres A, Kumar S, Buchanan-Wollaston V, Gifford ML. Cell specific analysis of Arabidopsis leaves using fluorescence activated cell sorting[J]. J Vis Exp, 2012, 68: 4214.
[88] Engel ML, Chaboud A, Dumas C, McCormick S. Sperm cells of Zea mays have a complex complement of mRNAs[J]. Plant J, 2003, 34: 697-707.
[89] Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN. A gene expression map of the Arabidopsis root[J]. Science, 2003, 302: 1956-1960.
[90] Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN. A high-resolution root spatiotemporal map reveals dominant expression patterns[J]. Science, 2007, 318: 801-806.
[91] Wee CW, Dinneny JR. Tools for high-spatial and temporal-resolution analysis of environmental responses in plants[J]. Biotechnol Lett, 2010, 32: 1361-1371.
计量
- 文章访问数: 1288
- HTML全文浏览量: 9
- PDF下载量: 2487