Advance of Phyllosphere Microorganisms and Their Interaction with the Outside Environment
-
摘要: 叶际微生物及其生存环境共同形成了一个复杂的生态系统。建立在纯种分离和纯培养技术基础之上的传统研究方法只能了解其中部分叶际微生物,但对物种组成、种群结构和生态学作用等方面的认识都比较片面。近年来随着分子生物学和生物信息学的进步,人们对叶际微生物总群落的分析逐渐揭示了叶际微生物组成的多样性及其特点,以及与外界互相作用的复杂性。研究表明,植物种类、地理位置和季节差异等都不同程度地影响着叶际微生物群落的构成。本文综述了近年来国内外叶际微生物群落结构组成及其与外界互作方面的研究进展,有利于加深对叶际微生物的了解,也有助于深入理解叶际微生物与植物生长和植物病虫害防治的关联关系。Abstract: The phyllosphere comprises the aerial parts of plants and is dominated by the leaves. Microbes that colonize the aerial habitat are termed phyllosphere microorganisms, and form a complex ecosystem within the environment. Conventional culture-dependent methodologies have provided partial information, but are limited by the medium and culture conditions. Recently, a significant advance in molecular biology and informatics techniques revealed vital clues regarding information on the identities and properties of microbial groups in the phyllosphere. Complex interactions are expected to occur in the phyllosphere between various microorganisms as well as between microorganisms and host plants. This article reviews the latest research on the diversity and multipartite interactions in phyllosphere bacterial communities, providing new insight into the relationships between phyllosphere microorganisms and contributing to more effective, less environmentally damaging means of plant pest control.
-
-
[1] Blakeman JP. Microbial Ecology of the Phylloplane[M]. New York:Academic Press Inc., 1981.
[2] Leveau JH. Life of Microbes on Aerial Plant Parts[M]. Principles of Plant-Microbe Interactions. Springer, 2015:17-24.
[3] Lindow SE, Bandl MT. Microbiology of the Phyllosphere[J]. Appl Environ Microbiol, 2003, 69(4):1875-1883.
[4] Whipps JM, Hand P, Pink D, Bending GD. Phyllosphere microbiology with special reference to diversity and plant genotype[J].J Appl Microbiol, 2008, 105(6):1744-1755.
[5] Yadav RKP, Papatheodorou EM, Karamanoli K, Constantinidou HA, Vokou D. Abundance and diversity of the phyllosphere bacterial communities of Mediterranean perennial plants that differ in leaf chemistry[J]. Chemoecology, 2008, 18(4):217-226.
[6] Newton AC, Gravouil C, Fountaine JM. Managing the ecology of foliar pathogens:ecological tolerance in crops[J]. Ann Appl Biol, 2010, 157(3):343-359.
[7] Berlec A. Novel techniques and findings in the study of plant microbiota:search for plant probiotics[J]. Plant Sci, 2012, 193-194(3):96-102.
[8] Bailey MJ, Lilley A, Timms-Wilson T, Spencer-Phillips P. Microbial Ecology of Aerial Plant Surfaces[M]. CABI, 2006.
[9] Delmotte N, Kniff C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, Von mering C, Vorholt JA. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria[J]. P Natl Acad Sci USA, 2009, 106(38):16428-16433.
[10] Redford AJ, Fierer N. Bacterial succession on the leaf surface:A novel system for studying successional dynamics[J].Microb Ecol, 2009, 58(1):189-198.
[11] Finkel OM, Burch AY, Lindow SE, Post AF, Belkin S. Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree[J].Appl Environ Microb, 2011, 77(21):7647-7655.
[12] Kim M, Singh D, Lai-Hoe A, Go R, Abdul Rahim R, Ainuddin AN, Chun J, Adams JM. Distinctive phyllosphere bacterial communities in tropical trees[J]. Microb Ecol, 2012, 63(3):674-681.
[13] Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, Von Mering C, Vorholt JA. Metaproteo-genomic analysis of microbial communities in the phyllosphere and rhizosphere of rice[J]. ISME J, 2012, 6(7):1378-1390.
[14] Stark M, Berger SA, Stamatakis A, Von Mering C. Mltreemap-accurate maximum likelihood placement of environmental DNA sequences into taxonomic and functional reference phylogenies[J]. BMC Genomics, 2010, 11(1):461.
[15] Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JH. Leaf microbiota in an agroecosystem:spatiotemporal variation in bacterial community composition on field-grown lettuce[J]. ISME J, 2012, 6(10):1812-1822.
[16] Vorholt JA. Microbial life in the phyllosphere[J]. Nat Rev Microbiol, 2012, 10(12):828-840.
[17] Weisburg WG, Barns SM, Pelletier DA.16S ribosomal DNA amplification for phylogenetic study[J]. J Bacteriol, 1991, 173(2):697-730.
[18] Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere[J]. ISME J, 2010, 4(6):719-728.
[19] Lee J, Teitzel GM, Munkvold K, Del Pozo O, Martin GB, Michelmore RW, Greenberg JT. TypeⅢ secretion and effectors shape the survival and growth pattern of Pseudomonas syringae on leaf surfaces[J]. Plant Physiol, 2012, 158(4):1803-1818.
[20] Jumpponen A, Jones KL. Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere[J]. New Phytol, 2009, 184(2):438-448.
[21] Baldotto L, Olivares FL. Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system[J]. Can J Microbiol, 2008, 54(11):918-931.
[22] Monier JM, Lindow S. Frequency, size, and localization of bacterial aggregates on bean leaf surfaces[J]. Appl Environ Microbiol, 2004, 70(1):346-355.
[23] Pérez-Velázquez J, Schlicht R, Dulla G, Hense B, Kuttler C, Lindow S. Stochastic modeling of Pseudomonas syringae growth in the phyllosphere[J]. Math Biosci, 2012, 239(1):106-116.
[24] Monier JM, Lindow S. Spatial organization of dual-species bacterial aggregates on leaf surfaces[J]. Appl Environ Microb, 2005, 71(9):5484-5493.
[25] Wilson M, Lindow S. Viable but Nonculturable Cells in Plant-Associated Bacterial Populations[M]. Colwell R, Grimes DJ. Nonculturable Microorganisms in the Environment. Springer US, 2000:229-241.
[26] Dinu LD, Bach S. Induction of viable but nonculturable Escherichia coli O157:H7 in the phyllosphere of lettuce:a food safety risk factor[J]. Appl Environ Microb, 2011, 77(23):8295-8302.
[27] Oliver JD. Recent findings on the viable but nonculturable state in pathogenic bacteria[J]. FEMS Microbiol Rev, 2010, 34(4):415-425.
[28] Degefu Y, Virtanen E, V Yrynen T. Pre-PCR processes in the molecular detection of blackleg and soft rot erwiniae in seed potatoes[J]. J Phytopathol, 2009, 157(6):370-378.
[29] Schloss PD, Handelsman J. Metagenomics for studying unculturable microorganisms:cutting the Gordian knot[J]. Genome Biol, 2005, 6(8):229.
[30] Ruppel S, Krumbein A, Schreiner M. Composition of the phyllospheric microbial populations on vegetable plants with different glucosinolate and carotenoid compositions[J]. Microb Ecol, 2008, 56(2):364-372.
[31] Rastogi G, Tech JJ, Coaker GL, Leveau JH. A PCR-based toolbox for the culture-independent quantification of total bacterial abundances in plant environments[J]. J Microbiol Meth, 2010, 83(2):127-132.
[32] Yashiro E, Spear RN, Mcmanus PS. Culture-dependent and culture-independent assessment of bacteria in the apple phyllosphere[J]. J Appl Microbiol, 2011, 110(5):1284-1296.
[33] Stiefel P, Zambelli T, Vorholt JA. Isolation of optically targeted single bacteria by application of fluidic force microscopy to aerobic anoxygenic phototrophs from the phyllosphere[J]. Appl Environ Microbiol, 2013, 79(16):4895-4905.
[34] Niwa R, Yoshida S, Furuya N, Tsuchiya K, Tsushima S. Method for simple and rapid enumeration of total epiphytic bacteria in the washing solution of rice plants[J]. Can J Microbiol, 2011, 57(1):62-67.
[35] Kisluk G, Yaron S. Presence and persistence of Salmonella enterica serotype typhimurium in the phyllosphere and rhizosphere of spray-irrigated parsley[J]. Appl Environ Microbiol, 2012, 78(11):4030-4036.
[36] Ponder M, Carder P, Lopez-velasco G, Welbaum GE. The development of spinach (Spinacia oleracea) phyllo-epiphytic bacterial community from seed through mature leaf stages is influenced by environment[J]. Acta Hortic, 2012, 938:29-38.
[37] Reisberg EE, Hildebrandt U, Riederer M, Hentschel U. Phyllosphere bacterial communities of trichome-bearing and trichomeless Arabidopsis thaliana leaves[J]. Anton Leeuw, 2012, 101(3):551-560.
[38] Ritz K. The plate debate:cultivable communities have no utility in contemporary environmental microbial ecology[J]. FEMS Microbiol Ecol, 2007, 60(3):358-362.
[39] Nichols D. Cultivation gives context to the microbial ecologist[J]. FEMS Microbiol Ecol, 2007, 60(3):351-357.
[40] Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK. Microbial community succession in an unvegetated, recently deglaciated soil[J]. Microbial Ecol, 2007, 53(1):110-122.
[41] Jackson CR, Churchill PF, Roden EE. Successional changes in bacterial assemblage structure during epilithic biofilm development[J]. Ecology, 2001, 82(2):555-566.
[42] Martiny AC, J Rgensen TM, Albrechtsen HJ, Arvin E, Molin S. Long-term succession of structure and diversity of a biofilm formed in a model drinking water distribution system[J]. Appl Environ Microbiol, 2003, 69(11):6899-6907.
[43] Perez JL, French JV, Summy KR, Baines AD, Little CR. Fungal phyllosphere communities are altered by indirect interactions among trophic levels[J]. Microbial Ecol, 2009, 57(4):766-774.
[44] Bringel F, Cou EI. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics[J]. Front Microbiol, 2015, 6:486
[45] Venkatachalam S, Ranjan K, Prasanna R, Ramakrishnan B, Thapa S, Kanchan A. Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere[J]. Plant Biol, 2016,18(4):627-637.
[46] Innerebner G, Knief C, Vorholt JA. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system[J]. Appl Environ Microbiol, 2011, 77(10):3202-3210.
[47] Ottesen AR, Gorham S, Pettengill JB, Rideout S, Evans P, Brown E. The impact of systemic and copper pesticide applications on the phyllosphere microflora of tomatoes[J]. J Sci Food Agr, 2015, 95(5):1116-1125.
[48] Melotto M, Underwood W, Koczan J, Nomura K, HE SY. Plant stomata function in innate immunity against bacterial invasion[J]. Cell, 2006, 126(5):969-980.
[49] Hunter PJ, Hand P, Pink D, Whipps JM, Bending GD. Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere[J]. Appli Environ Microbiol, 2010, 76(24):8117-8125.
[50] 王洋. β-氨基丁酸加强酵母诱导气孔免疫效应的研究[D]. 杭州:浙江大学, 2014. Wang Y. The study on the effect of β-aminobutyric acid enhancing the stomatal immunity induced by vest[D]. Hangzhou:Zhejiang University, 2014. [51] 杜威, 江萍, 王彦苏, 吕立新, 王宏伟, 卜元卿, 刘常宏, 戴传超. 白僵菌施加对水稻三种抗氧化酶活力及叶际微生物多样性的影响[J]. 生态学报, 2014, 34(23):6975-6984. Du W, Jiang P, Wang YS, Lü LX, Wang HW, Bu YQ, Liu CH, Dai CC. Effects of Beauveria bassiana on paddy antioxidant enzymes activities and phyllosphere microbial diversity[J]. Acta Ecologica Sinica, 2014, 34(23):6975-6984.
[52] Singh BK, Bardgett RD, Smith P, Reay DS. Microorga-nisms and climate change:terrestrial feedbacks and mitigation options[J]. Nat Rev Micro, 2010, 8(11):779-790.
[53] Muller T, Ruppel S. Progress in cultivation-independent phyllosphere microbiology[J]. FEMS Microbiol Ecol, 2014, 87(1):2-17.
[54] Papen H, Gessler A, Zumbusch E, Rennenberg H. Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input[J]. Curr Microbiol, 2002, 44(1):56-60.
[55] Knief C, Delmotte N, Vorholt JA. Bacterial adaptation to life in association with plants-a proteomic perspective from culture to in situ conditions[J]. Proteomics, 2011, 11(15):3086-3105.
[56] Ali N, Sorkhoh N, Salamah S, Eliyas M, Radwan S. The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants[J]. J Environ Manage, 2012, 93(1):113-120.
[57] Balint-kurti P, Simmons SJ, Blum JE, Ballar CL, Stapleton AE. Maize leaf epiphytic bacteria diversity patterns are genetically correlated with resistance to fungal pathogen infection[J]. Mol Plant Microbe In, 2010, 23(4):473-484.
[58] Pan J, Cui M, Hu Q, Ma A, Bai Z, Yang D, Zhang H, Guo H, Qi H. Multivariate analysis linkage of phyllospheric microbial community of transgenic cotton from SGK321 to Cry1Ac:a temporal expression dynamics[J]. Afr J Microbiol Res, 2012, 6:5371-5382.
[59] Lv D, Ma A, Bai Z, Zhuang X, Zhuang G. Response of leaf-associated bacterial communities to primary acyl-homoserine lactone in the tobacco phyllosphere[J]. Res Microbiol, 2012, 163(2):119-124.
[60] Carter MQ, Xue K, Brandl MT, Liu F, Wu L, Louie JW, Mandrell RE, Zhou J. Functional metagenomics of Escherichia coli O157:H7 interactions with spinach indigenous microorganisms during biofilm formation[J]. PloS One, 2012, 7(9):e44186.
[61] Vokou D, Vareli K, Zarali E, Karamanoli K, Constantini-dou HI, Monokrousos N, Halley J, Sainis I. Exploring biodiversity in the bacterial community of the mediterranean phyllosphere and its relationship with airborne bacteria[J]. Microbial Ecol, 2012, 64(3):714-724.
[62] Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. The ecology of the phyllosphere:geographic and phylogenetic variability in the distribution of bacteria on tree leaves[J]. Environ Microbiol, 2010, 12(11):2885-2893.
[63] Ding T, Palmer MW, Melcher U. Community terminal restriction fragment length polymorphisms reveal insights into the diversity and dynamics of leaf endophytic bacteria[J]. BMC Microbiol, 2013, 13(1):1-11.
[64] Bodenhausen N, Horton MW, Bergelson J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana[J]. PloS One, 2013, 8(2):118-125.
[65] Yadav RK, Karamanoli K, Vokou D. Bacterial colonization of the phyllosphere of mediterranean perennial species as influenced by leaf structural and chemical features[J]. Microbial Ecol, 2005, 50(2):185-196.
[66] Finkel OM, Burch AY, Elad T, Huse SM, Lindow SE, Post AF, Belkin S. Distance-decay relationships partially determine diversity patterns of phyllosphere bacteria on Tamarix trees across the Sonoran Desert (corrected)[J]. Appl Environ Microbiol, 2012, 78(17):6187-6193.
[67] Jumpponen A, Jones KL. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments[J]. New Phytol, 2010, 186(2):496-513.
[68] Jackson CR, Denney WC. Annual and seasonal variation in the phyllosphere bacterial community associated with leaves of the southern Magnolia (Magnolia grandiflora)[J]. Microbial Ecol, 2011, 61(1):113-122.
[69] Fierer N, Mccain CM, Meir P, Zimmermann M, Rapp JM, Silman MR, Knight R. Microbes do not follow the elevational diversity patterns of plants and animals[J]. Ecology, 2011, 92(4):797-804.
[70] 荆梦, 宿燕明, 谷立坤, 白志辉, 庄国强, 彭霞薇. 吡虫啉杀虫剂对桃树叶际微生物群落结构的影响[J]. 环境科学与技术, 2011, 34(5):1-6. Jing M, Su YM, Gu LK, Bai ZH, Zhuang GQ, Peng XW. Effects of imidacloprid insecticide on microbial community in peach phyllosphere[J].Environmental Science Technology, 2011, 35(5):1-6.
[71] 韩庆莉, 张俊忠, 刘丽, 赵志瑞, 王栋, 白志辉. 敌敌畏及1株高效降解菌对草莓叶际微生物群落结构的影响[J]. 贵州农业科学, 2013, 41(8):109-113. Han QL, Zhang GJ, liu L, Zhao ZR, Wang D, Bai ZH. Impacts of dichlorvos and one of its effective degrarding strains on microbial community structure in strawberry phyllosphere[J].Guizhou Agricultural Sciences, 2013, 41(8):109-112. [72] Penuelas J, Rico L, Ogaya R, Jump AS, Terradas J. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest[J].Plant Biol, 2012, 14(4):565-575.
计量
- 文章访问数: 1320
- HTML全文浏览量: 20
- PDF下载量: 1781