高级检索+

植物次生代谢基因簇研究进展

吕海舟, 刘琬菁, 何柳, 徐志超, 罗红梅

吕海舟, 刘琬菁, 何柳, 徐志超, 罗红梅. 植物次生代谢基因簇研究进展[J]. 植物科学学报, 2017, 35(4): 609-621. DOI: 10.11913/PSJ.2095-0837.2017.40609
引用本文: 吕海舟, 刘琬菁, 何柳, 徐志超, 罗红梅. 植物次生代谢基因簇研究进展[J]. 植物科学学报, 2017, 35(4): 609-621. DOI: 10.11913/PSJ.2095-0837.2017.40609
Lü Hai-Zhou, Liu Wan-Jing, He Liu, Xu Zhi-Chao, Luo Hong-Mei. Advances on the study of gene clusters involved in plant secondary metabolism[J]. Plant Science Journal, 2017, 35(4): 609-621. DOI: 10.11913/PSJ.2095-0837.2017.40609
Citation: Lü Hai-Zhou, Liu Wan-Jing, He Liu, Xu Zhi-Chao, Luo Hong-Mei. Advances on the study of gene clusters involved in plant secondary metabolism[J]. Plant Science Journal, 2017, 35(4): 609-621. DOI: 10.11913/PSJ.2095-0837.2017.40609

植物次生代谢基因簇研究进展

基金项目: 

国家自然科学基金项目(31570302);中国医学科学院医学与健康科技创新工程(2016-I2M-3-016)。

详细信息
    作者简介:

    吕海舟(1992-),女,硕士研究生,研究方向为药用植物功能基因组(E-mail:18010108227@163.com)。

    通讯作者:

    罗红梅,E-mail:hmluo@implad.ac.cn

  • 中图分类号: Q943.2

Advances on the study of gene clusters involved in plant secondary metabolism

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31570302) and CAMS Innovation Fund for Medical Sciences (CIFMS)(2016-I2M-3-016).

  • 摘要: 类似于原核生物的操纵子,在真核生物(如酵母、真菌、昆虫等)基因组中也出现了彼此功能相关的非同源基因成簇存在的现象。这些基因形成基因簇,可参与多种次生代谢途径。近年来,植物中也发现了越来越多的参与次生代谢产物合成的基因簇,它们已成为植物生物学研究的热点。本文总结并分析了植物中已鉴定的次生代谢基因簇。这些基因簇存在于玉米(Zea mays L.)、水稻(Oryza sativa L.)、拟南芥(Arabidopsis thaliana(L.) Heynh.)、番茄(Solanum lycopersicum L.)等植物的基因组中,分别参与合成苯并噁唑嗪酮类、萜类和生物碱类等次生代谢产物。本文通过解析这些基因簇的组成及结构特点,对其特征进行总结,探讨了基因簇形成的分子机理及其调控机制,对植物次生代谢基因簇在合成生物学及代谢工程学中的研究方向和应用前景进行了展望。
    Abstract: Genes encoding enzymes involved in the sequential biosynthesis steps of secondary metabolites are clustered together in the prokaryotic genome,also known as ‘operons’.In the genome of eukaryotes (e.g.yeasts,fungi,and insects),a set of functional genes responsible for special metabolite biosynthesis has also been discovered clustered in the chromosome.Recently,several secondary metabolic gene clusters have been identified in plants,such as Zea mays L.,Oryza sativa L.Arabidopsis thaliana(L.) Heynh.,and Solanum lycopersicum L..In this review,we summarize the identified gene clusters involved in the biosynthesis of benzoxazinoids,terpenoids,and alkaloids in plants,as well as analyze the mechanisms of gene cluster formation and regulation.In addition,the application prospects of these gene clusters are discussed.Increasing knowledge of plant metabolic gene clusters will facilitate the development of synthetic biology and metabolic engineering.
  • [1]

    Worthen DB. Streptomyces in nature and medicine:the antibiotic makers[J]. Oxford Univ Pr, 2008, 63(2):273-274.

    [2]

    O'Connor SE. Engineering of secondary metabolism[J]. Annu Rev Genet, 2015, 49:71-94.

    [3]

    Hurst LD, Pál C, Lercher MJ. The evolutionary dynamics of eukaryotic gene order[J]. Nat Rev Genet,2004, 5(4):299-310.

    [4]

    Wong S, Wolfe KH. Birth of a metabolic gene cluster in yeast by adaptive gene relocation[J]. Nat Genet, 2005, 37(7):777-782.

    [5]

    Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, et al. Gene map of the extended human MHC[J]. Nat Rev Genet, 2004, 5(12):889-899.

    [6]

    Rocha EPC. The organization of the bacterial genome[J]. Annu Rev Genet, 2008, 42(1):211-233.

    [7]

    Blumenthal T. Trans-splicing and Operons in C. elegans[M/OL]. Wormbook:the Online Review of C. elegans, 2012, 20, 1-11. http://www.wormbook.org.

    [8]

    Richard GF, Kerrest A, Dujon B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes[J]. Microbiol Mol Biol Rev, 2008, 72(4):686-727.

    [9]

    Frey M, Chomet P, Glawischnig E, Stettner C, Grün S, et al. Analysis of a chemical plant defense mechanism in grasses[J]. Science,1997, 277(5326):696-699.

    [10]

    Qi X, Bakht S, Leggett M, Maxwell C, Melton R, Osbourn A. A gene cluster for secondary metabolism in oat:implications for the evolution of metabolic diversity in plants[J]. Proc Natl Acad Sci USA, 2004, 101(21):8233-8238.

    [11]

    Wilderman PR, Xu M, Jin Y, Coates RM, Peters RJ. Identification of syn-pimara-7,15-[BFY]diene synthase reveals functional clustering of terpene synthases involved in rice phytoalexin/allelochemical biosynthesis[J]. Plant Physiol, 2004, 135(4):2098-105.

    [12]

    Jonczyk R, Schmidt H, Osterrieder A, Fiesselmann A, Schullehner K, et al. Elucidation of the final reactions of DIMBOA-glucoside biosynthesis in maize:characterization of Bx6and Bx7 [J]. Plant Physiol, 2008, 146(3):1053-1063.

    [13]

    von Rad U, Hüttl R, Lottspeich F, Gierl A, Frey M. Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize[J]. Plant J, 2001, 28(6):633-642.

    [14]

    Sue M, Nakamura C, Nomura T. Dispersed benzoxazinone gene cluster:molecular characterization and chromosomal localization of glucosyltransferase and glucosidase genes in wheat and rye[J]. Plant Physiol, 2011, 157(3):985-997.

    [15]

    Takos AM, Knudsen C, Lai D, Kannangara R, Mikkelsen L, et al. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicusand suggests the repeated evolution of this chemical defence pathway[J]. Plant J, 2011, 68(2):273-286.

    [16]

    Koch BM, Sibbesen O, Halkier BA, Svendsen I, Møller BL. The primary sequence of cytochrome P450tyr, the multifunctional N-hydroxylase catalyzing the conversion of Ltyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis the cyanogenic glucoside dhurrin in Sorghum bicolor(L.) Moench[J]. Arch Biochem Biophys, 1995, 323(1):177-186.

    [17]

    Bak S, Nielsen HL, Halkier BA. The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates[J]. Plant Mol Biol, 1998, 38(5):725-734.

    [18]

    Jones PR, Moller BL, Hoj PB. The UDP-glucose:p-hydroxymandelonitrile-O-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor:isolation, cloning, heterologous expression, and substrate specificity[J]. J Biol Chem, 1999, 274(50):35483-35491.

    [19]

    Falara V, Akhtar TA, Nguyen TT, Spyropoulou EA, Blee-ker PM, et al. The tomato terpene synthase gene family[J]. Plant Physiol, 2011, 157(2):770-789.

    [20]

    Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL, et al. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate[J]. Proc Natl Acad Sci USA, 2009, 106(26):10865-10870.

    [21]

    Matsuba Y, Nguyen TT, Wiegert K, Falara V, Gonzales-Vigil E, et al. Evolution of a complex locus for terpene biosynthesis in Solanum[J]. Plant Cell,2013, 25(6):2022-2036.

    [22]

    Matsuba Y, Zi J, Jones AD, Peters RJ, Pichersky E. Biosynthesis of the diterpenoid lycosantalonol via nerylneryl diphosphate in Solanum lycopersicum[J].PLoS One, 2015, 10(3):e0119302.

    [23]

    Shimura K, Okada A, Okada K, Jikumaru Y, Ko KW, et al. Identification of a biosynthetic gene cluster in rice for momilactones[J]. J Biol Chem, 2007, 282(47):34013-34018.

    [24]

    Wang Q, Hillwig ML, Peters RJ. CYP99A3:functional identification of a diterpene oxidase from the momilactone biosynthetic gene cluster in rice[J]. Plant J, 2011, 65(1):87-95.

    [25]

    Swaminathan S, Morrone D, Wang Q, Fulton DB, Peters RJ. CYP76M7 is an ent-cassadiene C11 ahydroxylase defining a second multifunctional diterpenoid biosynthetic gene cluster in rice[J]. Plant Cell, 2009, 21(10):3315-3325.

    [26]

    Wu Y, Hillwig ML, Wang Q, Peters RJ. Parsing a multifunctional biosynthetic gene cluster from rice:Biochemical characterization of CYP71Z6&7 [J]. FEBS Lett, 2011, 585(21):3446-3451.

    [27]

    Wang Q, Hillwig ML, Okada K, Yamazaki K, Wu Y, et al. Characterization of CYP76M5-8 indicates metabolic plasticity within a plant biosynthetic gene cluster[J]. J Biol Chem, 2012, 287(9):6159-6168.

    [28]

    Papadopoulou K, Melton RE, Leggett M, Daniels MJ, Osbourn AE. Compromised disease resistance in saponin-deficient plants[J]. Proc Natl Acad Sci USA, 1999, 96(22):12923-12928.

    [29]

    Corey EJ, Matsuda SP, Bartel B. Isolation of an Arabidopsis thalianagene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen[J]. Proc Natl Acad Sci USA, 1993, 90(24):11628-11632.

    [30]

    Qi X, Bakht S, Qin B, Leggett M, Hemmings A, et al. A different function for a member of an ancient and highly conserved cytochrome P450 family:from essential sterols to plant defense[J]. Proc Natl Acad Sci USA, 2006, 103(49):18848-18853.

    [31]

    Mugford ST, Qi X, Bakht S, Hill L, Wegel E, et al. A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats[J]. Plant Cell, 2009, 21(8):2473-2484.

    [32]

    Mugford ST, Louveau T, Melton R, Qi X, Bakht S, et al. Modularity of plant metabolic gene clusters:a trio of linked genes that are collectively required for acylation of triterpenes in oat[J]. Plant Cell, 2013, 25(3):1078-1092.

    [33]

    Owatworakit A, Townsend B, Louveau T, Jenner H, Rejzek M, et al. Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins[J]. J Biol Chem, 2013, 288(6):3696-3704.

    [34]

    Field B, Osbourn AE. Metabolic diversification-indepen-dent assembly of operon-like gene clusters in different plants[J]. Science, 2008, 320(5875):543-547.

    [35]

    Field B, Fiston-Lavier AS, Kemen A, Geisler K, Quesne-ville H, Osbourn AE. Formation of plant metabolic gene clusters within dynamic chromosomal regions[J]. Proc Natl Acad Sci USA, 2011, 108(38):16116-16121.

    [36]

    Krokida A, Delis C, Geisler K, Garagounis C, Tsikou D, et al. A metabolic gene cluster in Lotus japonicusdiscloses novel enzyme functions and products in triterpene biosynthesis[J]. New Phytol, 2013, 200(3):675-690.

    [37]

    Link S, Engelmann K, Meierhoff K, Westhoff P. The atypical short-chain dehydrogenases HCF173 and HCF244 are jointly involved in translational initiation of the psbA mRNA of Arabidopsis[J]. Plant Physiol, 2012, 160(4):2202-2218.

    [38]

    Winzer T, Gazda V, He Z, Kaminski F, Kern M, et al. A Papaver somniferum10-gene cluster for synthesis of the anticancer alkaloid noscapine[J]. Science, 2012, 336(6089):1704-1708.

    [39]

    Itkin M, Heinig U, Tzfadia O, Bhide AJ, Shinde B, et al. Biosynthesis of antinutritional alkaloids in solanaceouscrops is mediated by clustered genes[J]. Science, 2013, 341(6142):175-179.

    [40]

    Itkin M, Rogachev I, Alkan N, Rosenberg T, Malitsky S, Masini L, Meir S, Iijima Y, Aoki K, de Vos R, Prusky D, Burdman S, Beekwilder J, Aharoni A. Glycoalkaloid metabolism1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato[J]. Plant Cell, 2011, 23(12):4507-4525.

    [41]

    Kramer V, Koziel M. Structure of a maize tryptophan synthase a subunit gene with pith enhanced expression[J]. Plant Mol Biol, 1995, 27(6):1183-1188.

    [42]

    Dutartre L, Hilliou F, Feyereisen R. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae:gene duplications and origin of the Bxcluster[J]. BMC Evol Biol, 2012, 12:64-82.

    [43]

    Grün S, Frey M, Gierl A. Evolution of the indole alkaloid biosynthesis in the genus Hordeum:distribution of gramine and DIBOA and isolation of the benzoxazinoid biosynthesis genes from Hordeum lechleri[J]. Phytochemistry, 2005, 66(11):1264-1272.

    [44]

    Niemeyer HM. Hydroxamic acids 4-hydroxy-1,4-benz[BFY]oxazin-3-ones, defence chemicals in the gramineae[J]. Phytochemistry, 1988, 27(11):3349-3358.

    [45]

    Liby KT, Yore MM, Sporn MB. Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer[J]. Nat Rev Cancer, 2007, 7(5):357-369.

    [46]

    Delis C, Krokida A, Georgiou S, Peña-Rodríguez LM, Kavroulakis N, Ioannou E, Roussis V, Osbourn AE, Papadopoulou KK. Role of lupeol synthase in Lotus japonicusnodule formation[J]. New Phytol, 2011, 189(1):335-346.

    [47]

    Ye K, Ke Y, Keshava N, Shanks J, Kapp JA, Tekmal RR, Petros J, Joshi HC. Opium alkaloid noscapine is an antitumor agent that arrests metaphase and induces apoptosis in dividing cells[J]. Proc NatlAca Sci USA, 1998, 95(4):1601-1606.

    [48]

    Osbourn A. Secondary metabolic gene clusters:evolutio-nary toolkits for chemical innovation[J]. Trends Genet, 2010, 26(10):449-457.

    [49]

    Chu HY, Wegel E, Osbourn A. From hormones to secon-dary metabolism:the emergence of metabolic gene clusters in plants[J]. Plant J, 2011, 66(1):66-79.

    [50]

    Field B, Osbourn A. Order in the playground:formation of plant gene clusters in dynamic chromosomal regions[J]. Mob Genet Element, 2012, 2(1):46-50.

    [51]

    Okada A, Shimizu T, Okada K, Kuzuyama T, Koga J, Shibuya N, Nojiri H, Yamane H. Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice[J]. Plant Mol Biol, 2007, 65(1-2):177-187.

    [52]

    Okada A, Okada K, Miyamoto K, Koga J, Shibuya N, Nojiri H, Yamane H. OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice[J]. J Biol Chem, 2009, 284(39):26510-26518.

    [53]

    Yamane H. Biosynthesis of phytoalexins and regulatory mechanisms of it in rice[J]. Biosci Biotechnol Biochem, 2013, 77(6):1141-1148.

    [54]

    Vijayan J, Devanna BN, Singh NK, Sharma TR. Cloning and functional validation of early inducible Magnaporthe oryzaeresponsive CYP76M7 promoter from rice[J]. Front Plant Sci, 2015, 6:371.

    [55]

    Zheng L, McMullen MD, Bauer E, Sch n CC, Gierl A, Frey M. Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays[J]. J Exp Bot, 2015, 66(13):3917-3930.

    [56]

    Nützmann HW, Osbourn A. Regulation of metabolic gene clusters in Arabidopsis thaliana[J]. New Phytol, 2015, 205(2):503-510.

    [57]

    Deal RB, Topp CN, McKinney EC, Meagher RB. Repression of flowering in Arabidopsis requires activation of Flowering Locus Cexpression by the histone variant H2A.Z[J]. Plant Cell, 2007, 19(1):74-83.

    [58]

    Kumar SV, Wigge PA.H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis[J]. Cell, 2010, 140(1):136-147.

    [59]

    Takos AM, Rook F. Why biosynthetic genes for chemical defense compounds cluster[J]. Trends Plant Sci, 2012, 17(7):383-388.

    [60]

    McGary KL, Slot JC, Rokas A. Physical linkage of metabolic genes in fungi is an adaptation against the accumulation of toxic intermediate compounds[J]. ProcNatl Acad Sci USA, 2013, 110(28):11481-11486.

    [61]

    Winter JM, Behnken S, Hertweck C. Genomics-inspired discovery of natural products[J]. Curr Opin Chem Biol, 2011, 15(1):22-31.

    [62]

    Feng Z, Kallifidas D, Brady SF. Functional analysis of environmental DNA-derived type Ⅱ polyketide synthases reveals structurally diverse secondary metabolites[J]. Proc Natl Acad Sci USA, 2011, 108(31):12629-12634.

    [63]

    Castillo DA, Kolesnikova MD, Matsuda SP. An effective strategy for exploring unknown metabolic pathways by genome mining[J]. J Am Chem Soc, 2013, 135(15):5885-5894.

    [64]

    Chen SL, Song JY, Sun C, Xu J, Zhu YJ, Verpoorte R, Fan TP. Herbal genomics:Examining the biology of traditional medicines[J]. Science, 2015, 347(S6219):27-29.

    [65]

    Benner SA, Sismour AM. Synthetic biology[J]. Nat Rev Genet, 2005, 6(7):533-43.

    [66] 陈士林, 朱孝轩, 李春芳, 王勇, 姚辉, 孙超, 宋经元. 中药基因组学与合成生物学[J]. 药学学报, 2012, 47(8):1070-1078.

    Chen SL, Zhu XX, Li CF, Wang Y, Yao H, Sun C, Song JY. Genomics and synthetic biology of traditional Chinese medicine[J]. Acta Pharmaceutica Sinica,2012, 47(8):1070-1078.

    [67]

    Guerra-Bubb J, Croteau R, Williams RM. The early stages of taxol biosynthesis:an interim report on the synthesis and identification of early pathway metabolites[J]. Nat Prod Rep, 2012, 29:683-696.

    [68]

    Dietrich JA, Yoshikuni Y, Fisher KJ, Woolard FX, Ockey D, McPhee DJ, Renninger NS, Chang MC, Baker D, Keasling JD. A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450(BM3)[J]. ACS Chem Biol, 2009, 4:261-267.

    [69]

    Zhou YJ, Gao W, Rong Q, Jin G, Chu H, Liu W, Yang W, Zhu Z, Li G, Zhu G, Huang L, Zhao ZK. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J]. J Am Chem Soc, 2012, 134(6):3234-3241.

    [70]

    Dai Z, Liu Y, Zhang X, Shi M, Wang B, Wang D, Huang L, Zhang X. Metabolic engineering of Saccharomyces cerevisiaefor production of ginsenosides[J]. Metab Eng, 2013, 20:146-156.

    [71]

    Siddiqui MS, Thodey K, Trenchard I, Smolke CD. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools[J]. Fems Yeast Res, 2012, 12(2):144-170.

    [72]

    Gomez-Escribano JP, Bibb MJ. Engineering Streptomyces coelicolorfor heterologous expression of secondary metabolite gene clusters[J]. Microb Biotechnol, 2011, 4(2):207-215.

    [73]

    Chiang YM, Oakley CE, Ahuja M, Entwistle R, Schultz A, et al. An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans[J]. J Am Chem Soc, 2013, 135(20):7720-7731.

    [74]

    Kumar S, Hahn FM, Baidoo E, Kahlon TS, Wood DF, et al. Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts[J]. Metab Eng, 2012, 14(1):19-28.

    [75]

    Xu HB, Song JY, Luo HM, Zhang YJ, Li QS, et al. Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza[J]. Mol Plant, 2016, 9(6):949-952.

计量
  • 文章访问数:  1746
  • HTML全文浏览量:  23
  • PDF下载量:  2166
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-07
  • 网络出版日期:  2022-10-31
  • 发布日期:  2017-08-27

目录

    /

    返回文章
    返回