高级检索+

14-3-3蛋白参与植物应答非生物胁迫的研究进展

李芳, 滕建晒, 陈宣钦

李芳, 滕建晒, 陈宣钦. 14-3-3蛋白参与植物应答非生物胁迫的研究进展[J]. 植物科学学报, 2018, 36(3): 459-469. DOI: 10.11913/PSJ.2095-0837.2018.30459
引用本文: 李芳, 滕建晒, 陈宣钦. 14-3-3蛋白参与植物应答非生物胁迫的研究进展[J]. 植物科学学报, 2018, 36(3): 459-469. DOI: 10.11913/PSJ.2095-0837.2018.30459
Li Fang, Teng Jian-Shai, Chen Xuan-Qin. Research progress on the 14-3-3 protein involved in plant responses to abiotic stress[J]. Plant Science Journal, 2018, 36(3): 459-469. DOI: 10.11913/PSJ.2095-0837.2018.30459
Citation: Li Fang, Teng Jian-Shai, Chen Xuan-Qin. Research progress on the 14-3-3 protein involved in plant responses to abiotic stress[J]. Plant Science Journal, 2018, 36(3): 459-469. DOI: 10.11913/PSJ.2095-0837.2018.30459
李芳, 滕建晒, 陈宣钦. 14-3-3蛋白参与植物应答非生物胁迫的研究进展[J]. 植物科学学报, 2018, 36(3): 459-469. CSTR: 32231.14.PSJ.2095-0837.2018.30459
引用本文: 李芳, 滕建晒, 陈宣钦. 14-3-3蛋白参与植物应答非生物胁迫的研究进展[J]. 植物科学学报, 2018, 36(3): 459-469. CSTR: 32231.14.PSJ.2095-0837.2018.30459
Li Fang, Teng Jian-Shai, Chen Xuan-Qin. Research progress on the 14-3-3 protein involved in plant responses to abiotic stress[J]. Plant Science Journal, 2018, 36(3): 459-469. CSTR: 32231.14.PSJ.2095-0837.2018.30459
Citation: Li Fang, Teng Jian-Shai, Chen Xuan-Qin. Research progress on the 14-3-3 protein involved in plant responses to abiotic stress[J]. Plant Science Journal, 2018, 36(3): 459-469. CSTR: 32231.14.PSJ.2095-0837.2018.30459

14-3-3蛋白参与植物应答非生物胁迫的研究进展

基金项目: 

国家自然科学基金项目(31460058)。

详细信息
    作者简介:

    李芳(1993-),女,硕士研究生,研究方向为植物逆境生理(E-mail:1429281637@qq.com)。

    通讯作者:

    陈宣钦,E-mail:chenxuanqin12@aliyun.com

  • 中图分类号: Q943.2

Research progress on the 14-3-3 protein involved in plant responses to abiotic stress

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31460058).

  • 摘要: 14-3-3蛋白是一种在真核生物细胞中普遍存在且高度保守的蛋白。该蛋白在大多数物种中由一个基因家族编码,并以同源或异源二聚体的形式存在。不同的14-3-3蛋白同工型具有不同的细胞特异性,可通过识别特异的磷酸化或非磷酸化序列与靶蛋白相互作用。14-3-3蛋白在植物生长和发育的各个方面都起重要作用。本文主要围绕植物14-3-3蛋白的种类、结构、磷酸化或非磷酸化识别序列及其响应干旱、冷冻、盐碱、营养和机械胁迫等的分子机制研究进展进行综述。
    Abstract: The 14-3-3 protein is a ubiquitous and highly conserved protein in eukaryotic cells. In most species, it is encoded by one gene family and exists as a homologous or heterologous dimer. Different 14-3-3 protein isoforms have different cell specificities and interact with target proteins by identifying specific phosphorylation or non-phosphorylation sequences. The 14-3-3 protein in plants plays an important role in plant growth and development. In this paper, we reviewed the types, structures, sequences of phosphorylation or non-phosphorylation, and molecular mechanisms of plant 14-3-3 proteins under drought, cold, salinity, nutrition, and mechanical stress.
  • [1]

    Moore BW, Perez VJ. Specific acidic proteins of the nervous system[M]//Carlson FD, ed. Physiological and Biochemical Aspects of Nervous Integration. Englewood Cliffs:Prentice-Hall Inc, 1967.

    [2]

    Chen F, Li Q, Sun L, He Z. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress[J]. DNA Res, 2006, 13(2):53-63.

    [3]

    Klychnikov OI, Li KW, Lill H, de Boer AH. The V-ATPase from etiolated barley (Hordeum vulgare L.) shoots is activated by blue light and interacts with 14-3-3 proteins[J]. J Exp Bot, 2007, 58(5):1013-1023.

    [4]

    Bachmann M, Huber JL, Liao PC, Gage DA, Huber SC. The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea) leaves is a 14-3-3 protein[J]. FEBS Lett, 1996, 387(2-3):127-131.

    [5]

    Mamaeva AS, Fomenkov AA, Nosov AV, Novikova GV. Regulation of protein phosphorylation by nitric oxide in cell culture of Arabidopsis thaliana[J]. Russ J Plant Physiol, 2017, 64(5):657-664.

    [6]

    De Vetten NC, Ferl RJ. Two genes encoding GF14(14-3-3) proteins in Zea mays. Structure, expression, and potential regulation by the G-box binding complex[J]. Plant Physiol, 1994, 106(4):1593-1604.

    [7]

    Szopa J, Wróbel M, Matysiak I. The metabolic profile of the 14-3-3 repressed transgenic potato tubers[J]. Plant Sci, 2001, 161(6):1075-1082.

    [8]

    Roberts MR, Bowles DJ. Fusicoccin, 14-3-3 proteins, and defense responses in tomato plants[J]. Plant Physiol, 1999, 119(4):1243-1250.

    [9]

    Brandwein D, Wang Z. Interaction between Rho GTPases and 14-3-3 proteins[J]. Int J Mol Sci, 2017, 18(10):2148.

    [10]

    Aducci P, Camoni L, Marra M, Visconti S. From cytosol to organelles:14-3-3 proteins as multifunctional regulators of plant cell[J]. IUBMB Life, 2002, 53(1):49-55.

    [11]

    Waese J, Fan J, Pasha A, Yu H, Fucile G, et al. ePlant:visualizing and exploring multiple levels of data for hypo-thesis generation in plant biology[J]. Plant Cell, 2017, 29(8):1806-1821.

    [12] 文彬, 王小菁. 14-3-3蛋白研究进展[J]. 生命科学, 2004, 16(4):226-230.

    Wen B, Wang XJ. Advance in 14-3-3 proteins[J]. Chinese Bulletin of Life Sciences, 2004, 16(4):226-230.

  • 期刊类型引用(6)

    1. 江林琪,赵佳莹,郑飞雄,姚馨怡,李效贤,俞振明. 铁皮石斛14-3-3基因家族鉴定及表达分析. 生物技术通报. 2024(03): 229-241 . 百度学术
    2. 陈盈盈,吴丁洁,刘源,张航,刘艳娇,王晶宇,李瑞丽. 14-3-3蛋白及其在植物中的功能研究进展. 生物技术通报. 2024(04): 12-22 . 百度学术
    3. 任家玄,李艳梅,马维峰,吴宙,毛娟. 苹果14-3-3基因家族的鉴定与MdGRF13的功能分析. 果树学报. 2023(03): 405-421 . 百度学术
    4. 时兴伟,陈叶,李玉兰,袁哲明,董玉梅,李兰芝. 苦荞14-3-3基因家族生物信息学分析. 分子植物育种. 2021(05): 1473-1483 . 百度学术
    5. 易丹,王博,段慧荣,李毅,王丽蓉. 白刺14-3-3基因家族的鉴定及表达分析. 草地学报. 2021(03): 443-456 . 百度学术
    6. 邹禹,刘园园,钱宝云,占新春,郑乐娅,张炜,张培江. 水稻高盐胁迫下的酵母双杂交文库构建及OsRPK1胞内互作蛋白质的筛选. 江苏农业学报. 2019(04): 753-763 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  1662
  • HTML全文浏览量:  75
  • PDF下载量:  1255
  • 被引次数: 18
出版历程
  • 收稿日期:  2017-10-15
  • 网络出版日期:  2022-10-31
  • 发布日期:  2018-06-27

目录

    /

    返回文章
    返回