高级检索+

秦岭落叶阔叶林不同空间尺度下土壤微生物特征

李永恒, 李乾玺, 吴君君, 程晓莉

李永恒, 李乾玺, 吴君君, 程晓莉. 秦岭落叶阔叶林不同空间尺度下土壤微生物特征[J]. 植物科学学报, 2020, 38(3): 335-346. DOI: 10.11913/PSJ.2095-0837.2020.30335
引用本文: 李永恒, 李乾玺, 吴君君, 程晓莉. 秦岭落叶阔叶林不同空间尺度下土壤微生物特征[J]. 植物科学学报, 2020, 38(3): 335-346. DOI: 10.11913/PSJ.2095-0837.2020.30335
Li Yong-Heng, Li Qian-Xi, Wu Jun-Jun, Cheng Xiao-Li. Soil microbial attributes at different spatial scales in deciduous broad-leaved forest in Qinling Mountains[J]. Plant Science Journal, 2020, 38(3): 335-346. DOI: 10.11913/PSJ.2095-0837.2020.30335
Citation: Li Yong-Heng, Li Qian-Xi, Wu Jun-Jun, Cheng Xiao-Li. Soil microbial attributes at different spatial scales in deciduous broad-leaved forest in Qinling Mountains[J]. Plant Science Journal, 2020, 38(3): 335-346. DOI: 10.11913/PSJ.2095-0837.2020.30335
李永恒, 李乾玺, 吴君君, 程晓莉. 秦岭落叶阔叶林不同空间尺度下土壤微生物特征[J]. 植物科学学报, 2020, 38(3): 335-346. CSTR: 32231.14.PSJ.2095-0837.2020.30335
引用本文: 李永恒, 李乾玺, 吴君君, 程晓莉. 秦岭落叶阔叶林不同空间尺度下土壤微生物特征[J]. 植物科学学报, 2020, 38(3): 335-346. CSTR: 32231.14.PSJ.2095-0837.2020.30335
Li Yong-Heng, Li Qian-Xi, Wu Jun-Jun, Cheng Xiao-Li. Soil microbial attributes at different spatial scales in deciduous broad-leaved forest in Qinling Mountains[J]. Plant Science Journal, 2020, 38(3): 335-346. CSTR: 32231.14.PSJ.2095-0837.2020.30335
Citation: Li Yong-Heng, Li Qian-Xi, Wu Jun-Jun, Cheng Xiao-Li. Soil microbial attributes at different spatial scales in deciduous broad-leaved forest in Qinling Mountains[J]. Plant Science Journal, 2020, 38(3): 335-346. CSTR: 32231.14.PSJ.2095-0837.2020.30335

秦岭落叶阔叶林不同空间尺度下土壤微生物特征

基金项目: 

国家自然科学基金(31470557,31770563)。

详细信息
    作者简介:

    李永恒(1993-),男,硕士研究生,研究方向为土壤生态学(E-mail:zoccolo_lee@163.com)。

    通讯作者:

    程晓莉,E-mail:xlcheng@fudan.edu.cn

  • 中图分类号: Q948

Soil microbial attributes at different spatial scales in deciduous broad-leaved forest in Qinling Mountains

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31470557,31770563).

  • 摘要: 在秦岭佛坪国家级自然保护区内的固定样地,设置3种不同空间尺度(大:20 m×20 m,中:5 m×5 m,小:1.25 m×1.25 m)的样方,采用野外调查和室内分析的方法,对固定样地土壤微生物特征及其环境因子进行研究,探讨不同空间尺度下土壤微生物特征(磷脂脂肪酸(PLFAs)生物量、土壤微生物群落结构和基础土壤呼吸)对环境因子的响应。结果显示,土壤全磷、溶解性有机碳和溶解性总氮含量在3种空间尺度间有显著差异(P < 0.05)。对微生物PLFAs生物量的研究显示,放线菌生物量在小空间尺度下显著低于大、中空间尺度(P< 0.05),其他微生物PLFAs生物量都没有显著差异。支链/单不饱和PLFAs的比值在大空间尺度下显著高于中、小空间尺度(P< 0.05),其他微生物群落结构特征都没有显著差异。基础土壤呼吸在大空间尺度和小空间尺度间的差异显著(P < 0.05);单位PLFAs的基础土壤呼吸则表现出中、小空间尺度显著高于大空间尺度(P < 0.05)。相关性分析和冗余分析表明,不同空间尺度下,环境因子对微生物特征的解释度也存在明显差异。大空间尺度下,解释度最高的环境因子是土壤有机碳、含水率和溶解性氮;中空间尺度下,解释度最高的是含水率、土壤有机氮和溶解性有机碳;小空间尺度下,解释度最高的是pH、全磷含量和土壤有机氮。本研究结果表明由于尺度效应的存在,导致随着取样尺度的缩小,环境因子的交互作用增强和空间自相关程度增大,从而表现出在不同空间尺度下环境因子对土壤微生物的影响存在差异。
    Abstract: We established three different spatial-scale fixed plots in Foping National Nature Reserve in the Qinling Mountains. Based on field investigation and indoor analysis, we investigated soil microbial characteristics and environmental factors in order to explore the responses of microbial phospholipid fatty acid (PLFA) biomass, microbial structure, and respiration to environmental factors. Results showed that microbial PLFA biomass did not significantly change among the three sampling scales, except actinomycete biomass was higher at the small scale compared with the other scales (P < 0.05). Similarly, microbial community structure was not significantly different, except the branched/monounsaturated PLFA ratio was significantly higher at the large scale than the small and mid-scales (P < 0.05). Pearson correlation analysis indicated that there were significant differences in the correlation between microbial characteristics and environmental factors at different spatial scales. Moreover, redundancy analysis (RDA) showed that the interpretation of microbial attributes by environmental factors differed at different spatial scales. Namely, the most important controllers of microbial attributes were soil organic carbon, water content, and dissolved nitrogen at the large scale; water content, soil organic nitrogen, and dissolved organic carbon at the mid-scale; and soil pH, total phosphorus content, and soil organic nitrogen at the small scale. Thus, our results showed that the interactions among environmental factors and degree of spatial autocorrelation increased at the small scale due to the existence of the scale effect, indicating that environmental factors had different effects on soil microorganisms at different spatial scales.
  • [1]

    Balesdent J, Basile-Doelsch I, Chadoeuf J, Cornu S, Derrien D, Fekiacova Z, Hatte C. Atmosphere-soil carbon transfer as a function of soil depth[J]. Nature,2018, 559(7715):599-602.

    [2] 王家骏, 王传宽, 韩轶. 帽儿山不同年龄森林土壤呼吸速率的影响因子[J]. 生态学报, 2018, 38(4):1194-1202.

    Wang JJ, Wang CK, Han Y. Factors affecting soil respiration in stands of different ages in the Maoershan region, northeast China[J]. Acta Ecologica Sinica, 2018, 38(4):1194-1202.

    [3]

    Rubio VE, Detto M. Spatiotemporal variability of soil respiration in a seasonal tropical forest[J]. Ecol Evol,2017, 7(17):7104-7116.

    [4]

    Armalyte J, Skerniskyte J, Bakiene E, Krasauskas R, Siugzdiniene R, Kareiviene V, et al. Microbial diversity and antimicrobial resistance profile in microbiota from soils of conventional and organic farming systems[J]. Front Microbiol,2019, 10:892.

    [5]

    Tedersoo L, Bahram M, Cajthaml T, Polme S, Hiiesalu I, Anslan S, et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent[J]. ISME J,2016, 10(2):346-362.

    [6] 肖玉娜, 钟信林, 王北辰, 杨渐, 蒋宏忱. 通辽科尔沁地区土壤微生物群落结构和功能及其影响因素[J/OL]. 地球科学, 2019:1-23[2020-02-01]. http://kns.cnki.net/kcms/detail/42.1874.P.20190408.1703.010.html.
    [7]

    Garcia-Franco N, Martínez-Mena M, Goberna M, Albaladejo J. Changes in soil aggregation and microbial community structure control carbon sequestration after afforestation of semiarid shrublands[J]. Soil Biol Biochem,2015, 87:110-121.

    [8] 徐嘉晖, 孙颖, 高雷, 崔晓阳. 土壤有机碳稳定性影响因素的研究进展[J]. 中国生态农业学报, 2018, 26(2):22-230.

    Xu JH, Sun Y, Gao L, Cui XY. A review of the factors influencing soil organic carbon stability[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2):222-230.

    [9]

    Lucas ST, D'Angelo EM, Williams MA. Improving soil structure by promoting fungal abundance with organic soil amendments[J]. Appl Soil Ecol,2014, 75:13-23.

    [10]

    You YM, Wang J, Sun XL, Tang ZX, Zhou ZY, Sun OJ. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem[J]. Sci Rep,2016, 6:22411.

    [11] 李慧, 王百田, 曹远博, 刘青青, 李德宁. 吕梁山区3种人工林植被、凋落物生物量差异特征及其与土壤养分的关系[J]. 植物研究, 2016, 36(4):573-580.

    Li H, Wang BT, Cao YB, Liu QQ, Li DN. Difference feature of planted vegetation biomass and litter biomass for three plantations and their relationship with soil nutrients in Lvliang mountainous region[J]. Bulletin of Botanical Research, 2016, 36(4):573-580.

    [12] 左巍, 贺康宁, 田赟, 王玮璐. 青海高寒区不同林分类型凋落物养分状况及化学计量特征[J]. 生态学杂志, 2016, 35(9):2271-2278.

    Zuo W, He KN, Tian Y, WangWL. Surface litter stoichio-metry for five forest types in alpine region, Qinghai, China[J]. Chinese Journal of Ecology, 2016, 35(9):2271-2278.

    [13] 罗赵慧, 田大伦, 宁晨, 闫文德. 栾树林对湘潭锰矿废弃地土壤碳氮含量的影响[J]. 林业科学, 2014, 50(3):130-133.

    Luo ZH, Tian DL, Ning C, Yan WD. Effections of koelreuteria paniculata plantation on soil carbon, and nitrogen content in Xiangtan manganese mining wasteland, Hunan[J]. Scientia Silvae Sinicae, 2014, 50(3):130-133.

    [14]

    Li QX, Wang XG, Jiang MX, Wu Y, Yang XL, Liao C, Liu F. How environmental and vegetation factors affect spatial patterns of soil carbon and nitrogen in a subtropical mixed forest in central China[J]. J Soils Sediments,2016, 17(9):2296-2304.

    [15]

    Zhang NL, Wan SQ, Guo JX, Han GD, Gutknecht J, Schmid B, et al. Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands[J]. Soil Biol Biochem,2015, 89:12-23.

    [16] 刘庆, 魏建兵, 吴志峰, 钟世锦, 何元庆, 吉冬青. 广州市流溪河河岸带土壤反硝化作用的多尺度影响因子[J]. 中国环境科学, 2015, 35(10):3069-3077.

    Liu Q, Wei JB, Wu ZF, Zhong SJ, He YQ, Ji DQ. Effects of multi-scale control factors on spatial heterogeneity of denitrification in riparian soil:a case study in Liuxi River of Guangzhou City[J]. China Environmental Science, 2015, 35(10):3069-3077.

    [17] 李龙, 姜丽娜, 白建华. 半干旱区土壤有机碳空间变异及其影响因素的多尺度相关分析[J]. 中国水土保持科学, 2018, 16(5):40-48.

    Li L, Jiang LN, Bai JH. Multi-scale correlations between spatial variability of soil organic carbon and its influencing factors in semiarid zone[J]. Science of Soil and Water Conservation, 2018, 16(5):40-48.

    [18] 曹永昌, 谭向平, 和文祥, 耿增超, 刘帅, 佘雕,等. 秦岭地区不同林分土壤微生物群落代谢特征[J]. 生态学报, 2016, 36(10):2978-2986.

    Cao YC, Tan XP, He WX, Geng ZC, Liu S, She D, et al. The metabolism characteristics of microbial community in different forest soil in Qinling mountains area[J]. Acta Ecologica Sinica, 2016, 36(10):2978-2986.

    [19] 曹永昌, 杨瑞, 刘帅, 王紫泉, 和文祥, 耿增超. 秦岭典型林分夏秋两季根际与非根际土壤微生物群落结构[J]. 生态学报, 2017, 37(5):1667-1676.

    Cao YC, Yang R, Liu S, Wang ZQ, He WX, Geng ZC. Characteristics of microbial community in forest soil between rhizosphere and non-rhizosphere in summer and autumn in Qinling mountains, China[J]. Acta Ecologica Sinica, 2017, 37(5):1667-1676.

    [20] 张彤彤, 耿增超, 许晨阳, 张晓鹏, 杜璨, 王志康,等. 秦岭辛家山林区落叶松外生菌根真菌多样性[J]. 微生物学报, 2018, 58(3):443-454.

    Zhang TT, Geng ZC, Xu CY, Zhang XP, Du C, Wang ZK, et al. Diversity of ectomycorrhizal fungi associated with Larixg melinii in Xinjiashan forest region of Qinling mountains[J]. Acta Microbiologica Sinica, 2018, 58(3):443-454.

    [21] 窦艳星, 侯琳, 马红红, 张硕新, 田瑞选. 间伐对松栎混交林土壤活性有机碳的影响[J]. 中南林业科技大学学报, 2015, 35(5):64-69.

    Dou YX, Hou L, Ma HH, Zhang SX, Tian RX. Effects of forest thinning on soil labile organic carbon in a Pine-oak mixed forest[J]. Journal of Central South University of Forestry and Technology, 2015, 35(5):64-69.

    [22] 陈莉莉, 王得祥, 于飞, 王兆杰, 黄雅昆, 张洪武. 松栎混交林土壤微生物数量与土壤酶活性及土壤养分关系的研究[J]. 土壤通报, 2014, 45(1):77-84.

    Chen LL, Wang DX, Yu F, Wang ZJ, Huang YK, Zhang HW. The relationship among microbial quantities, enzyme activities and nutrients in soil of Pine-oak mixed forest[J]. Chinese Journal of Soil Science, 2014, 45(1):77-84.

    [23]

    Wang J, Zhang B, Hou X, Chen XN, Han N, Chang G. Effects of mast seeding and rodent abundance on seed predation and dispersal of Quercus aliena (Fagaceae) in Qinling mountains, central China[J]. Plant Ecol,2017, 218(7):855-865.

    [24]

    Wang W, Franklin SB, Lu ZJ, Rude BJ. Delayed flowering in bamboo:evidence from Fargesia qinlingensis in the Qinling mountains of China[J]. Front Plant Sci,2016, 7:151.

    [25]

    Li QX, Feng J, Wu JJ, Jia W, Zhang Q, Chen Q, et al. Spatial variation in soil microbial community structure and its relation to plant distribution and local environments following afforestation in central China[J]. Soil Tillage Res,2019, 193:8-16.

    [26]

    Saetre P, Bååth E. Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand[J]. Soil Biol Biochem,2000, 32(7):909-917.

    [27]

    Wang C, Lu XK, Mori T, Mao QG, Zhou KJ, Zhou GY, et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest[J]. Soil Biol Biochem, 2018, 121:103-112.

    [28]

    Zhang XF, Xin XL, Zhu AN, Yang WL, Zhang JB, Ding SJ, et al. Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements[J]. Soil Tillage Res,2018, 178:99-107.

    [29]

    Zhang Q, Wu JJ, Yang F, Lei Y, Zhang Q, Cheng XL. Alterations in soil microbial community composition and biomass following agricultural land use change[J]. Sci Rep,2016, 6:36587.

    [30]

    Yang F, Zhang DD, Wu JJ, Chen Q, Long CY, Li YH, Cheng XL. Anti-seasonal submergence dominates the structure and composition of prokaryotic communities in the riparian zone of the Three Gorges Reservoir, China[J]. Sci Total Environ,2019, 663:662-672.

    [31]

    Zhang XF, Xu SJ, Li CM, Zhao L, Feng HY, Yue GY, et al. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau[J]. Res Microbiol,2014, 165(2):128-139.

    [32]

    Drenovsky RE, Vo D, Graham KJ, Scow KM. Soil water content and organic carbon availability are major determinants of soil microbial community composition[J]. Microb Ecol,2004, 48(3):424-430.

    [33]

    Brockett BFT, Prescott CE, Grayston SJ. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada[J]. Soil Biol Biochem,2012, 44(1):9-20.

    [34]

    Zhang JS, Guo JS, Chen GS, Qian W. Soil microbial biomass and its controls[J]. J For Res,2005, 16(4):327-330.

    [35] 施瑶, 王忠强, 张心昱, 孙晓敏, 刘希玉, 何念鹏,等. 氮磷添加对内蒙古温带典型草原土壤微生物群落结构的影响[J]. 生态学报, 2014, 34(17):4943-4949.

    Shi Y, Wang ZQ, Zhang XY, Sun XM, Liu XY, He NP, et al. Effects of nitrogen and phosphorus addition on soil microbial community composition in temperate typical grassland in Inner Mongolia[J]. Acta Ecologica Sinica, 2014, 34(17):4943-4949.

    [36] 朱凡, 李天平, 郁培义, 宿少锋, 洪湘琦, 陈婷. 施氮对樟树林土壤微生物碳源代谢的影响[J]. 林业科学, 2014, 50(8):82-89.

    Zhu F, Li TP, Yu PY, Su SF, Hong XQ, Chen T. Carbon source utilization of soil microbial communities in response to nitrogen addition in the Cinnamomum camphora plantation[J]. Scientia Silvae Sinicae, 2014, 50(8):82-89.

    [37]

    Pietri JCA, Brookes PC. Relationships between soil pH and microbial properties in a UK arable soil[J]. Soil Biol Biochem,2008, 40(7):1856-1861.

    [38] 王卫霞, 史作民, 罗达, 刘世荣, 卢立华. 南亚热带3种人工林土壤微生物生物量和微生物群落结构特征[J]. 应用生态学报, 2013, 24(7):1784-1792.

    Wang WX, Shi ZM, Luo D, Liu SR, Lu LH. Characteristics of soil microbial biomass and community composition in three types of plantations in southern subtropical area of China[J]. Chinese Journal of Applied Ecology, 2013, 24(7):1784-1792.

    [39] 孙锋, 赵灿灿, 何琼杰, 吕会会, 管奕欣, 谷艳芳. 施肥和杂草多样性对土壤微生物群落的影响[J]. 生态学报, 2015, 35(18):6023-6031.

    Sun F, Zhao CC, He QJ, Lü HH, Guan YX, Gu YF. Effects of fertilization and diversity of weed species on the soil microbial community[J]. Acta Ecologica Sinica, 2015, 35(18):6023-6031.

    [40]

    Zhalnina K, Dias R, de Quadros PD, Davis-Richardson A, Camargo FA, Clark IM, et al. Soil pH determines microbial diversity and composition in the park grass experiment[J]. Microb Ecol,2015, 69(2):395-406.

    [41]

    Wardle DA. A comparative-assessment of factors which influence microbial biomass carbon and nitrogen levels in soil[J]. Biol Rev,1992, 67(3):321-358.

    [42] 吕一河, 傅伯杰. 生态学中的尺度及尺度转换方法[J]. 生态学报, 2001, 21(12):2096-2105.

    Lü YH, Fu BJ. Ecological scale and scaling[J]. Acta Ecologica Sinica, 2001, 21(12):2096-2105.

    [43] 吴静, 陈书涛, 胡正华, 张旭. 不同温度下的土壤微生物呼吸及其与水溶性有机碳和转化酶的关系[J]. 环境科学, 2015, 36(4):1497-1506.

    Wu J, Chen ST, Hu ZH, Zhang X. Soil microbial respiration under different soil temperature conditions and its relationship to soil dissolved organic carbon and invertase[J]. Environmental Science, 2015, 36(4):1497-1506.

    [44]

    Berthold T, Centler F, Hubschmann T, Remer R, Thullner M, Harms H, Wick LY. Mycelia as a focal point for horizontal gene transfer among soil bacteria[J]. Sci Rep,2016, 6:36390.

  • 期刊类型引用(2)

    1. 杜昊楠,兰国玉,吴志祥,陈伟,杨川. 海南热带雨林土壤细菌组成与多样性分析. 南方农业学报. 2022(03): 840-849 . 百度学术
    2. 杜昊楠,陈伟,兰国玉,吴志祥,杨川. 海南热带雨林土壤真菌时空分布格局. 生态学杂志. 2021(08): 2450-2459 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  524
  • HTML全文浏览量:  5
  • PDF下载量:  811
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-09-03
  • 修回日期:  2019-10-24
  • 网络出版日期:  2022-10-31
  • 发布日期:  2020-06-27

目录

    /

    返回文章
    返回