高级检索+

横断山地区六叶龙胆复合群的遗传分化与种群动态历史

付鹏程, 谭金舟, 王宏宇, 孙姗姗

付鹏程, 谭金舟, 王宏宇, 孙姗姗. 横断山地区六叶龙胆复合群的遗传分化与种群动态历史[J]. 植物科学学报, 2020, 38(3): 390-399. DOI: 10.11913/PSJ.2095-0837.2020.30390
引用本文: 付鹏程, 谭金舟, 王宏宇, 孙姗姗. 横断山地区六叶龙胆复合群的遗传分化与种群动态历史[J]. 植物科学学报, 2020, 38(3): 390-399. DOI: 10.11913/PSJ.2095-0837.2020.30390
Fu Peng-Cheng, Tan Jing-Zhou, Wang Hong-Yu, Sun Shan-Shan. Genetic divergence and demographic history of Gentiana hexaphylla Maximowicz ex Kusnezow complex (Gentianaceae) in Hengduan Mountains[J]. Plant Science Journal, 2020, 38(3): 390-399. DOI: 10.11913/PSJ.2095-0837.2020.30390
Citation: Fu Peng-Cheng, Tan Jing-Zhou, Wang Hong-Yu, Sun Shan-Shan. Genetic divergence and demographic history of Gentiana hexaphylla Maximowicz ex Kusnezow complex (Gentianaceae) in Hengduan Mountains[J]. Plant Science Journal, 2020, 38(3): 390-399. DOI: 10.11913/PSJ.2095-0837.2020.30390

横断山地区六叶龙胆复合群的遗传分化与种群动态历史

基金项目: 

国家自然科学基金项目(31600296);河南省高等学校青年骨干教师培养计划。

详细信息
    作者简介:

    付鹏程(1988-),男,博士,副教授,研究方向为植物进化遗传学(E-mail:fupengc@lynu.edu.cn)。

    通讯作者:

    孙姗姗,E-mail:sss823129@126.com

  • 中图分类号: Q347

Genetic divergence and demographic history of Gentiana hexaphylla Maximowicz ex Kusnezow complex (Gentianaceae) in Hengduan Mountains

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31600296) and Foundation of Henan Provincial Youth Backbone Teachers.

  • 摘要: 以六叶龙胆(Gentiana hexaphylla Maximowicz ex Kusnezow)复合群的21个居群为材料,首先通过居群内关键形态性状的统计对复合群加以区分,随后以叶绿体片段trnS-trnG为分子标记,对其遗传分化与种群动态历史进行研究。结果显示:六叶龙胆复合群21个居群共鉴定出20个单倍型,居群平均单倍型多样性、核苷酸多样性和核苷酸多样性指数分别为0.444、0.00732和3.73,表现出较高的遗传多样性水平;居群间共享单倍型少,遗传变异主要发生在居群间(72.74%)。贝叶斯分析结果表明复合群内的遗传分化主要发生在近两百万年以内。歧点分布分析和中性检验结果均显示,复合群近期未经历明显的居群扩张。因此,六叶龙胆复合群的遗传分化可能是横断山地区第四纪环境与气候变化以及高山峡谷地貌的地理隔离两者共同作用的结果。
    Abstract: The Hengduan Mountains are a global biodiversity center and hotspot of plant evolution research. Being endemic to the Hengduan Mountains, Gentiana hexaphylla Maximowicz ex Kusnezow shows continuous morphological characters with many of its closely related species. In this study, 21 populations were sampled to distinguish the G. hexaphylla complex through key morphological characters at the population level, and to explore genetic divergence and demographic history based on one chloroplast fragment. The number of haplotypes, average haplotype diversity, nucleotide diversity, and genetic diversity index(Pi) were 0.444, 0.00732, and 3.73, respectively, indicating high genetic diversity in the complex. Haplotypes were rarely shared among populations and most genetic variation occurred among populations (72.74%) rather than within populations (27.26%). Bayesian analysis indicated that genetic divergence in the complex occurred within the last two million years. Mismatch distribution and neutrality tests consistently showed that the G. hexaphylla complex has not experienced significant population expansion recently. In conclusion, genetic divergence within the G. hexaphylla complex has been shaped by climatic and environmental changes during the Quaternary as well as by geological isolation in the Hengduan Mountains.
  • [1]

    Marchese C. Biodiversity hotspots:a shortcut for a more complicated concept[J]. Global Ecol Conser, 2015, 3:297-309.

    [2]

    Mosbrugger V, Favre A, Muellner-Riehl AN, Päckert M, Mulch A. Cenozoic evolution of Geo-Biodiversity in the Tibeto-Himalayan region[M]//Hoorn C, Perrigo A, Antonelli A. eds. Mountains, Climate, and Biodiversity. Ne-therlands:John Wiley & Sons, 2018.

    [3]

    Favre A, Michalak I, Chen CH, Wang JC, Pringle JS, et al. Out-of-Tibet:the spatio-temporal evolution of Gen-tiana (Gentianaceae)[J]. J Biogeogr, 2016, 43:1967-1978.

    [4]

    Ebersbach J, Muellner-Riehl AN, Michalak I, Tkach N, Hoffmann MH, et al. In and out of the Qinghai-Tibet Plateau:divergence time estimation and historical bio-geography of the large arctic-alpine genus Saxifraga L.[J]. J Biogeogr, 2017, 44(4):900-910.

    [5]

    Qiu YX, Fu CX, Comes HP. Plant molecular phylogeography in China and adjacent regions:Tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora[J]. Mol Phylogenet Evol, 2011, 59(1):225-244.

    [6]

    Liu JQ, Duan YW, Hao G, Ge XJ, Sun H. Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibet Plateau[J]. J Syst Evol, 2014, 52(3):241-249.

    [7]

    Wen J, Zhang JQ, Nie ZL, Zhong Y, Sun H. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau[J]. Front Genet, 2014, 5:4.

    [8]

    Hughes CE, Atchison GW. The ubiquity of alpine plant radiations:from the Andes to the Hengduan Mountains[J]. New Phytol, 2015, 207(2):275-282.

    [9]

    Sun H, Zhang J, Deng T, Boufford DE. Origins and evolution of plant diversity in the Hengduan Mountains, China[J]. Plant Diversity, 2017, 39(4):161-166.

    [10]

    Xing Y, Ree RH. Uplift-driven diversification in the Heng-duan Mountains, a temperate biodiversity hotspot[J]. Proc Natl Acad Sci USA, 2017, 114(17):E3444-E3451.

    [11]

    Ho TN, Liu SW. A worldwide monograph of Gentiana[M]. Beijing:Science Press, 2001.

    [12]

    Rybczyński JJ, Davey MR, Mikuła A, eds. The Gen-tianaceae:Vol.2:Biotechnology and Applications[M]. Berlin:Springer-Verlag, 2015.

    [13]

    Ho TN, Pringle JS. Gentianaceae[M]//Wu ZY, Raven PH, eds. Flora of China. Beijing:Science Press, 1995.

    [14] 郑斌. 龙胆属头花组和多枝组的分类学研究——兼论《湖北植物志》中两种龙胆的分类学地位[D]. 北京:中国科学院大学, 2017.
    [15]

    Sun SS, Fu PC, Zhou XJ, Cheng YW, Zhang FQ, et al. The complete plastome sequences of seven species in Gentiana sect. Kudoa (Gentianaceae):Insights into plastid gene loss and molecular evolution[J]. Front Plant Sci, 2018, 9:493.

    [16] 孙姗姗, 付鹏程. 龙胆族(龙胆科)分类与进化研究进展[J]. 西北植物学报, 2019, 39(2):363-370.

    Sun SS, Fu PC. Study on taxonomy and evolution of Gentianeae (Gentianaceae)[J]. Acta Bot Boreal-Occident Sin, 2019, 39(2):363-370.

    [17]

    Petit RJ, Aguinagalde I, De Beaulieu JL, Bittkau C, Brewer S, et al. Glacial refugia:hotspots but not melting pots of genetic diversity[J]. Science, 2003, 300(5625):1563-1565.

    [18]

    Li Y, Stocks M, Hemmilä S, Källman T, Zhu HT, et al. Demographic histories of four spruce (Picea) species of the Qinghai-Tibetan Plateau and neighboring areas inferred from multiple nuclear loci[J]. Mol Biol Evol, 2010, 27(5):1001-1014.

    [19]

    Meng HH, Su T, Gao XY, Li J, Jiang XL, et al. Warm-cold colonization:response of oaks to uplift of the Himalaya-Hengduan Mountains[J]. Mol Ecol, 2017, 26(12):3276-3294.

    [20]

    Xie C, Xie DF, Zhong Y, Guo XL, Liu Q, Zhou SD. The effect of Hengduan Mountains Region (HMR) uplift to environmental changes in the HMR and its eastern adjacent area:Tracing the evolutionary history of Allium section Sikkimensia (Amaryllidaceae)[J]. Mol Phylogenet Evol, 2019, 130:380-396.

    [21]

    Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf material[J]. Phytochem Bullet, 1987, 19(1):11-15.

    [22]

    Hamilton MB. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation[J]. Mol Ecol,1999, 8(3):521-523.

    [23]

    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, et al. Geneious basic:An integrated and extendable desktop software platform for the organization and analysis of sequence data[J]. Bioinformatics, 2012, 28(12):1647-1649.

    [24]

    Librado P, Rozas J. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data[J]. Bioinforma-tics, 2009, 25(11):1451-1452.

    [25]

    Excoffier L, Lischer HEL. Arlequin suite ver 3.5:a new series of programs to perform population genetics analyses under Linux and Windows[J]. Mol Ecol Resour, 2010, 10(3):564-567.

    [26]

    Pons O, Petit RJ. Measuring and testing genetic differen-tiation with ordered versus unordered alleles[J]. Gene-tics, 1996, 144(3):1237-1245.

    [27]

    Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes:application to human mitochondrial DNA restriction data[J]. Genetics, 1992, 131(2):479-491.

    [28]

    Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 1997, 147(2):915-925.

    [29]

    Rogers AR, Harpending H. Population growth makes waves in the distribution of pairwise genetic differences[J]. Mol Biol Evol, 1992, 9(3):552-569.

    [30]

    Guindon S. Gascuel O. A simple, fast and accurate me-thod to estimate large phylogenies by maximum-likelihood[J]. Syst Biol, 2003, 52(5):696-704.

    [31]

    Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2:more models, new heuristics and parallel computing[J]. Nat Methods, 2012, 9(8):772.

    [32]

    Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies[J]. Mol Biol Evol, 1999, 16(1):37-48.

    [33]

    Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, et al. BEAST 2:a software platform for Bayesian evolu-tionary analysis[J]. PLoS Comput Biol, 2014, 10(4):e1003537.

    [34]

    Drummond AJ, Suchard MA, Xie D, Rambaut A, Notes A. Bayesian phylogenetics with BEAUti and the BEAST 1.7[J]. Mol Biol Evol, 2012, 29(8):1969-1973.

    [35] 洪德元. 生物多样性事业需要科学、可操作的物种概念[J]. 生物多样性, 2016, 24(9):979-999.

    Hong DY. Biodiversity pursuits needs a scientific and operative species concept[J]. Biodiversity Science, 2016, 24(9):979-999.

    [36]

    Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, et al. Hybridization and speciation[J]. J Evolution Biol, 2013, 26(2):229-246.

    [37]

    Nolte AW, Tautz D. Understanding the onset of hybrid speciation[J]. Trends Genet, 2010, 26(2):54-58.

    [38]

    Luo D, Yue JP, Sun WG, Xu B, Li ZM, et al. Evolutionary history of the subnival flora of the Himalaya-Hengduan Mountains:First insights from comparative phylogeography of four perennial herbs[J]. J Biogeogr, 2016, 43(1):31-43.

    [39]

    Fu PC, Gao QB, Zhang FQ, Xing R, Khan G, et al. Responses of plants to changes in Qinghai-Tibetan Plateau and glaciations:Evidence from phylogeography of a Sibiraea (Rosaceae) complex[J]. Biochem Syst Ecol, 2016, 65:72-82.

    [40]

    Khan G, Zhang FQ, Gao QB, Fu PC, Zhang Y, Chen SL. Spiroides shrubs on Qinghai-Tibetan Plateau:Multilocus phylogeography and palaeodistributional reconstruction of Spiraea alpina and S. Mongolica (Rosaceae)[J]. Mol Phylogenet Evol, 2018, 123:137-148.

    [41]

    Li Y, Gao QB, Gengji ZM, Jia LK, Wang ZH, Gao QB. Rapid intraspecific diversification of the alpine species Saxifraga sinomontana (Saxifragaceae) in the Qinghai-Tibetan Plateau and Himalayas[J]. Front Genet, 2018, 9:381.

    [42]

    Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, et al. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas[J]. Biol Rev, 2015, 90(1):236-253.

    [43]

    Muellner-Riehl AN. Mountains as evolutionary arenas:patterns, emerging approaches, paradigm shifts, and their implications for plant phylogeographic research in the Tibeto-Himalayan region[J]. Front Plant Sci, 2019, 10:195.

    [44]

    Feng B, Zhao Q, Xu JP, Qin J, Yang ZL. Drainage isolation and climate change-driven population expansion shape the genetic structures of Tuber indicum complex in the Hengduan Mountains region[J]. Sci Rep-UK, 2016, 6:21811.

    [45]

    Liang QL, Xu XT, Mao KS, Wang MC, Wang K, et al. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains[J]. J Biogeogr, 2018, 45(6):1334-1344.

计量
  • 文章访问数:  654
  • HTML全文浏览量:  3
  • PDF下载量:  1056
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-09
  • 修回日期:  2019-12-16
  • 网络出版日期:  2022-10-31
  • 发布日期:  2020-06-27

目录

    /

    返回文章
    返回