高级检索+

茶树遗传转化研究进展

焦小雨, 王雷刚, 刘丹丹, 阮旭, 徐奕鼎, 吴琼, 孙明慧, 王文杰

焦小雨, 王雷刚, 刘丹丹, 阮旭, 徐奕鼎, 吴琼, 孙明慧, 王文杰. 茶树遗传转化研究进展[J]. 植物科学学报, 2021, 39(4): 446-456. DOI: 10.11913/PSJ.2095-0837.2021.40446
引用本文: 焦小雨, 王雷刚, 刘丹丹, 阮旭, 徐奕鼎, 吴琼, 孙明慧, 王文杰. 茶树遗传转化研究进展[J]. 植物科学学报, 2021, 39(4): 446-456. DOI: 10.11913/PSJ.2095-0837.2021.40446
Jiao Xiao-Yu, Wang Lei-Gang, Liu Dan-Dan, Ruan Xu, Xu Yi-Ding, Wu Qiong, Sun Ming-Hui, Wang Wen-Jie. Research progress on genetic transformation of Camellia sinensis (L.) O. Kuntze[J]. Plant Science Journal, 2021, 39(4): 446-456. DOI: 10.11913/PSJ.2095-0837.2021.40446
Citation: Jiao Xiao-Yu, Wang Lei-Gang, Liu Dan-Dan, Ruan Xu, Xu Yi-Ding, Wu Qiong, Sun Ming-Hui, Wang Wen-Jie. Research progress on genetic transformation of Camellia sinensis (L.) O. Kuntze[J]. Plant Science Journal, 2021, 39(4): 446-456. DOI: 10.11913/PSJ.2095-0837.2021.40446

茶树遗传转化研究进展

基金项目: 

安徽省重大专项(202003a06020021);安徽省农业科学院科研项目(2021YL80)。

详细信息
    作者简介:

    焦小雨(1993-),女,研究实习员,研究方向为茶树生物技术和分子生物学(E-mail:wsjxy93@126.com)。

    通讯作者:

    王文杰,E-mail:391590137@qq.com

  • 中图分类号: Q943.2

Research progress on genetic transformation of Camellia sinensis (L.) O. Kuntze

Funds: 

This work was supported by grants from the Major Special Projects of Anhui Province (202003a06020021) and Scientific Research Project of Anhui Academy of Agricultural Sciences (2021YL80).

  • 摘要: 茶(Camellia sinensis (L.) O.Kuntze)是全球重要的非酒精饮料之一,随着遗传转化技术的不断发展以及人们对高抗性和高品质型品种的需求,通过遗传转化进行茶树定向改良越来越受到学者们的关注。本文在回顾和总结茶树各遗传转化方法的特点和研究现状的基础上,重点讨论和概述了当前茶树遗传转化技术存在的主要问题以及影响茶树外植体遗传转化的主要因素,并对“从活体植株上重新诱导分生组织”技术在茶遗传转化中的应用前景进行了展望。
    Abstract: Tea (Camellia sinensis (L.) O. Kuntze) is one of the most important non-alcoholic beverages in the world. With the continuous development of genetic transformation technology and strong demand for highly resistant and high-quality C.sinensis varieties, direct improvement of C. sinensis through genetic transformation has attracted increasing attention. In this paper, the characteristics and research status of various genetic transformation methods of C. sinensis are reviewed. The main problems with current genetic transformation technology and the main factors affecting genetic transformation of C. sinensis are discussed. In addition, the prospects of de novo meristem induction from in-vivo technology in the genetic transformation of C. sinensis are also considered.
  • [1] 梁月荣, 石萌. 茶树遗传育种研究进展[J]. 茶叶科学, 2015, 35(2):103-109.

    Liang YR, Shi M. Advances in tea plant genetics and breeding[J]. Journal of Tea Science, 2015, 35(2):103-109.

    [2] 翟秀明, 唐敏, 罗红玉, 邬秀宏, 侯渝嘉. 茶树倍性育种研究进展[J]. 中国农学通报, 2018, 34(7):8-12.

    Zhai XM, Tang M, Luo HY, Wu XH, Hou YJ. Research progress of tea polyploidy breeding[J]. Chinese Agricultural Science Bulletin, 2018, 34(7):8-12.

    [3]

    Lv Q, Chen C, Xu Y, Hu SK, Wang L, et al. Optimization of Agrobacterium tumefaciens-mediated transformation systems in tea plant (Camellia sinensis)[J]. Hortic Plant J, 2017, 3(3):105-109.

    [4] 刘硕谦, 唐雨薇, 田娜, 刘丽萍, 王若娴, 梁恒. 一种茶树咖啡因合成酶CRISPR/Cas9基因组编辑载体的构建方法:105821075[P]. 2016-08-03.
    [5] 陈兰, 朱晨, 李小桢, 傅海峰, 郭玉. 茶树遗传转化体系研究进展[J]. 安徽农业科学, 2019, 47(12):14-18.

    Chen L, Zhu C, Li XZ, Fu HF, Guo Y. Research progress on genetic transformation system of Camellia sinensis[J]. Journal of Anhui Agricultural Sciences, 2019, 47(12):14-18.

    [6] 宋大鹏. 儿茶素对农杆菌介导的茶树遗传转化的影响[D]. 合肥:安徽农业大学, 2014.
    [7] 陈丽梅, 潘俊松, 何欢乐, 蔡润. 农杆菌介导的基因转化研究进展[J]. 甘肃科学学报, 2005, 17(2):61-63.

    Chen LM, Pan JS, He HL, Cai R. Progress of gene transformation mediated by Agrobacteria[J]. Journal of Gansu Sciences, 2005, 17(2):61-63.

    [8] 胡燕. 转基因技术在茶树抗病虫育种中的应用前景[J]. 安徽农业科学, 2011, 39(32):19692.

    Hu Y. Application prospect of transgene technique in tea plants breeding of resistance to diseases and pests[J]. Journal of Anhui Agricultural Sciences, 2011, 39(32):19692.

    [9] 张学文, 刘选明, 董延瑜, 周朴华. 茶树愈伤组织诱导与共培转化的初步研究[J]. 湖南农学院学报, 1994, 20(6):550-554.

    Zhang XW, Liu XM, Dong YY, Zhou PH. Preliminary study of callus induction and co-culture transformation of Thea sinensis[J]. Journal of Hunan Agricultural College, 1994, 20(6):550-554.

    [10]

    Matsumoto S, Fukui M. Agrobacterium tumefaciens-mediated gene transfer to tea plant (Camellia sinensis) cells[J]. Jpn Agr Res Q, 1998, 32(4):287-291.

    [11] 骆颖颖, 梁月荣. Bt基因表达载体的构建及对茶树遗传转化的研究[J]. 茶叶科学, 2000, 20(2):141-147.

    Luo YY, Liang YR. Studies on the construction of Bt gene expression vector and its transformation in tea plant[J]. Journal of Tea Science, 2000, 20(2):141-147.

    [12] 赵东, 刘祖生, 陆建良, 钱利生, 屠幼英, 奚彪. 根癌农杆菌介导茶树转化研究[J]. 茶叶科学, 2001, 21(2):108-111.

    Zhao D, Liu ZS, Lu JL, Qian LS, Tu YY, Xi B. Study on Agrobacterium tumefaciens-mediated transformation of tea plant[J]. Journal of Tea Science, 2001, 21(2):108-111.

    [13]

    Mondal TK, Bhattacharya A, Ahuja PS, Chand PK. Transgenic tea (Camellia sinensis (L.) O. Kuntze cv. Kangra Jat) plants obtained by Agrobacterium-mediated transformation of somatic embryos[J]. Plant Cell Rep, 2001, 20(8):712-720.

    [14] 吴珊, 梁月荣, 陆建良, 金惠淑, 吴颖. 茶树农杆菌转化系统和基因枪转化系统的优化[J]. 茶叶科学, 2003, 23(1):6-10.

    Wu S, Liang YR, Lu JL, Kim H, Wu Y. Optimization of Agrobacterium-mediated and particle bombardment-mediated transformation systems in tea plant (Camellia sinensis)[J]. Journal of Tea Science, 2003, 23(1):6-10.

    [15]

    Sandal I, Saini U, Lacroix B, Bhattacharya A, Ahuja PS, Citovsky V. Agrobacterium-mediated genetic transformation of tea leaf explants:effects of counteracting bactericidity of leaf polyphenols without loss of bacterial virulence[J]. Plant Cell Rep, 2007, 26(2):169-176.

    [16] 石冠华. 茶树遗传转化体系的研究[D]. 合肥:安徽农业大学, 2012.
    [17] 项威, 史成颖, 贺志荣, 徐燕. 根癌农杆菌介导茶树转基因体系的建立[J]. 安徽农业大学学报, 2012, 39(5):721-724.

    Xiang W, Shi CY, He ZR, Xu Y. Establishment of an Agrobacterium-mediated transformation system for tea plant (Camellia sinensis)[J]. Journal of Anhui Agricultural Sciences, 2012, 39(5):721-724.

    [18] 汤志近. 茶氨酸合成相关基因RNAi载体的构建及茶树遗传转化研究[D]. 合肥:安徽农业大学, 2013.
    [19]

    Singh HR, Bhattacharyya N, Agarwala N, Bhagawati P, Deka M, Das S. Exogenous gene transfer in Assam tea (Camellia assamica (Masters)) by Agrobacterium-mediated transformation using somatic embryo[J]. Euro J Exp Bio, 2014, 4(3):166-175.

    [20] 田丽丽, 李娟, 张静, 刘建军, 王英姿, 等. 农杆菌介导茶树遗传转化中抗生素种类和浓度优化[J]. 分子植物育种, 2017, 15(3):934-937.

    Tian LL, Li J, Zhang J, Liu JJ, Wang YZ, et al. Studies on optimization of antibiotic species and concentration in genetic transformation of Camellia sinensis L. mediated by Agrobacterium[J]. Molecular Plant Breeding, 2017, 15(3):934-937.

    [21]

    Singh HR, Hazarika P, Agarwala N, Bhattacharyya N, Bhagawati P, et al. Transgenic tea over-expressing solanum tuberosum endo-1,3-beta-D-glucanase gene conferred resistance against blister blight disease[J]. Plant Mol Biol Rep, 2018, 36:107-122.

    [22] 唐雨薇. CRISPR/Cas9介导的茶树基因组编辑技术体系的构建[D]. 长沙:湖南农业大学, 2018.
    [23]

    Singh HR, Hazarika P, Deka M, Das S. Study of Agrobacterium-mediated co-transformation of tea for blister blight disease resistance[J]. J Plant Biochem Biot, 2019, 29(2):24-35.

    [24] 奚彪, 刘祖生, 梁月荣, 杨秀芳, 黄卫红, 等. 发根农杆菌介导的茶树遗传转化[J]. 茶叶科学, 1997, 17(S1):155-156.
    [25] 高秀清, 成浩, 牛爱军. 茶树毛状根的诱导[J]. 特产研究, 2004(2):31-33.

    Gao XQ, Cheng H, Niu AJ. Induction of hair roots from tea[J]. Special Wild Economic Animal and Plant Research, 2004(2):31-33.

    [26] 彭正云, 刘德华, 肖海军, 蒋立文,张丽霞,等. 发根农杆菌转化茶树的研究[J]. 湖南农业大学学报(自然科学版), 2006, 32(2):190-194.

    Peng ZY, Liu DH, Xiao HJ, Jiang LW, Zhang LX, et al. Study on Agrobacterium-mediated transformation of Camellia sinensis L.[J]. Journal of Hunan Agricultural University(Natural Sciences), 2006, 32(2):190-194.

    [27] 张广辉, 梁月荣, 陆建良. 发根农杆菌介导的茶树发根高频诱导与遗传转化[J]. 茶叶科学, 2006, 26(1):1-10.

    Zhang GH, Liang YR, Lu JL. Agrobacterium rhizogenes-mediated high frequency hairy root induction and genetic transformation in tea plant[J]. Journal of Tea Science, 2006, 26(1):1-10.

    [28]

    Zhang GH, Liang YR, Jin J, Lu JL, Borthakur D, et al. Induction of hairy roots by Agrobacterium rhizogenes in relation to L-theanine production in Camellia sinensis[J]. J Hortic Sci Biotech, 2007, 82(4):636-640.

    [29]

    John KMM, Joshi SD, Mandal AKA, Kumar SR, Kumar RR. Agrobacterium rhizogenes-mediated hairy root production in tea leaves (Camellia sinensis (L.) O. Kuntze)[J]. Indian J Biotechnol, 2009, 8(4):430-434.

    [30]

    Neelakshi B, Hijam RS, Niraj A, Bhagawati P, Ahmed G, Das S. Agrobacterium mediated transfer of nptII and gus genes in Camellia assamica[J]. J Agric Biotech Sustain Dev, 2014, 6(2):22-28.

    [31]

    Song DP, Feng L, Rana MM, Gao MJ, Wei S. Effects of catechins on Agrobacterium-mediated genetic transformation of Camellia sinensis[J]. Plant Cell Tiss Org, 2014, 119(1):27-37.

    [32]

    Rana MM, Han ZX, Song DP, Liu GF, Li DX, et al. Effect of medium supplements on Agrobacterium rhizogenes mediated hairy root induction from the callus tissues of Camellia sinensis var. sinensis[J]. Int Journal Mol Sci, 2016, 17(7):1132.

    [33]

    Herrera-Estrella L, Depicker A, Montagu MV, Schell J. Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector[J]. Nature, 1983, 303(5914):209-213.

    [34]

    Herrera-Estrella L, de Block M, Messens E, Hernalsteens JP, Montagu MV, Schell J. Chimeric genes as dominant selectable markers in plant cells[J]. Embo J, 1983, 2(6):987-995.

    [35] 陈秀清. 发根农杆菌诱导毛状根研究进展[J]. 安徽农业科学, 2011, 39(16):9512-9514.

    Cheng XQ. Research progress of hairy roots induced by Agrobacterium rhizogenes[J]. Journal of Anhui Agricultu-ral Sciences, 2011, 39(16):9512-9514.

    [36] 武姣, 孔瑾, 王忆, 韩振海, 许雪峰. 发根农杆菌介导山定子遗传转化及发根再生植株[J]. 园艺学报, 2008, 35(7):959-966.

    Wu J, Kong J, Wang Y, Han ZH, Xu XF. Agrobacterium rhizogenes-mediated transformation and hairy root rege-neration of Malus baccata (L.) Borkh[J]. Acta Horticulturae Sinica, 2008, 35(7):959-966.

    [37]

    Bahramnejad B, Naji M, Bose R, Jha S. A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation[J]. Biotechnol Adv, 2019, 37(7):107405.

    [38] 肖璇. 发根农杆菌介导的柑橘遗传转化体系建立及转基因柑橘溃疡病抗性分析[D]. 武汉:华中农业大学, 2014.
    [39]

    Wu J, Wang Y, Zhang LX, Zhang XZ, Kong J, et al. High-efficiency regeneration of Agrobacterium rhizogenes-induced hairy root in apple rootstock Malus baccata (L.) Borkh[J]. Plant Cell Tiss Org, 2012, 111(2):183-189.

    [40] 吴姗, 梁月荣, 陆建良, 黎昊雁. 基因枪及其与农杆菌相结合的茶树外源基因转化条件优化[J]. 茶叶科学, 2005, 25(4):255-264.

    Wu S, Liang YR, Lu JL,Li HY. Combination of particle bombardment-mediated and Agrobacterium-mediated transformation methods in tea plant[J]. Journal of Tea Science, 2005, 25(4):255-264.

    [41]

    Mohanpuria P, Kumar V, Ahuja PS, Yadav SK. Producing low-caffeine tea through post-transcriptional silencing of caffeine synthase mRNA[J]. Plant Mol Biol, 2011, 76(6):523-534.

    [42]

    Saini U, Kaur D, Bhattacharya A, Kumar S, Singh RD, Ahuja PS. Optimising parameters for biolistic gun-mediated genetic transformation of tea (Camellia sinensis (L.) O. Kuntze)[J]. J Hortic Sci Biotech, 2012, 87(6):605-612.

    [43]

    Bhattacharya A, Saini U, Joshi R, Kaur D, Pal AK, et al. Osmotin-expressing transgenic tea plants have improved stress tolerance and are of higher quality[J]. Transgenic Res, 2014, 23(2):211-223.

    [44]

    Sandal I, Koul R, Saini U, Mehta M, Dhiman N, et al. Development of transgenic tea plants from leaf explants by the biolistic gun method and their evaluation[J]. Plant Cell Tiss Org, 2015, 123:245-255.

    [45] 任海红, 任小俊, 王英, 刘学义. 非组培遗传转化法在农作物上的应用[J]. 山西农业科学, 2010, 38(11):85-88.

    Ren HH, Ren XJ, Wang Y,Liu XY. Application of non-tissue culture transformation methods in farm crops[J]. Journal of Shanxi Agricultural Sciences, 2010, 38(11):85-88.

    [46] 李玲玲, 江昌俊, 房婉萍, 邓威威. 花粉管通道法对茶树进行dsTCS基因转化的初步研究[J]. 安徽农业大学学报, 2007, 34(1):20-22.

    Li LL, Jiang CJ, Fang WP, Deng WW. Transform of dsTCS into tea plant(Camellia sinensis) by pollen-tube pathway[J]. Journal of Anhui Agricultural Sciences, 2007, 34(1):20-22.

    [47] 成杨, 赵洋, 杨培迪, 杨阳, 刘振. 茶树Bt和Cpti双价抗虫基因转化研究[J]. 茶叶通讯, 2014, 41(4):41-43.

    Cheng Y, Zhao Y, Yang PD, Yang Y, Liu Z. Transform of Bt and Cpti into tea plant(Camellia sinesis)[J]. Journal of Tea Communication, 2014, 41(4):41-43.

    [48] 成杨, 杨阳, 刘振, 赵洋,杨培迪. 双价抗虫基因转化对茶籽生长发育影响的研究初探[J]. 茶叶通讯, 2016, 43(1):35-37.

    Cheng Y, Yang Y, Liu Z, Zhao Y, Yang PD. The effect of the transformation of the dual resistance gene on the growth of tea seeds[J]. Journal of Tea Communication, 2016, 43(1):35-37.

    [49]

    Mohanpuria P, Kumar V, Ahuja PS, Yadav SK. Agrobacterium-mediated silencing of caffeine synthesis through root transformation in Camellia sinensis L.[J]. Mol Biotechnol, 2011, 48(3):235-243.

    [50]

    Subramanian S, Graham MY, Yu O, Graham TL. RNA Interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae[J]. Plant Physiol, 2005, 137(4):1345-1353.

    [51]

    Stanisławska J, Olszewski WL. RNA interference-significance and applications[J]. Arch Immunol Ther Ex, 2005, 53(1):39-46.

    [52]

    Alagarsamy K, Shamala LF, Wei S. Protocol:high-efficiency in-planta Agrobacterium-mediated transgenic hairy root induction of Camellia sinensis var. sinensis[J]. Plant Methods, 2018, 14(1):17.

    [53] 毛清黎, 施兆鹏, 李玲, 刘仲华, 朱旗. 茶叶儿茶素对发根农杆菌的抑制作用及抗酚菌株筛选研究[J]. 茶叶科学, 2007, 27(3):243-247.

    Mao QL, Shi ZP, Li L, Liu ZH, Zhu Q. Study on inhibita-tion of Agrobacterium rhizogenes by tea catechin and screening of anti-polyphenol strain[J]. Journal of Tea Science, 2007, 27(3):243-247.

    [54] 仓梅芹, 周健, 成浩, 黎星辉, 王丽鸳. 几种农杆菌的耐酚性能比较与驯化研究[J]. 茶叶科学, 2008, 28(3):189-194.

    Cang MQ, Zhou J, Cheng H, Li XH, Wang LY. Studies on polyphenol-resisting characteristics of several kinds of Agrobacterium and the domestication of polyphenol-resisting strain[J]. Journal of Tea Science, 2008, 28(3):189-194.

    [55] 王栋鑫, 彭棣, 张爽. 农杆菌介导木本植物遗传转化的研究进展[J]. 北方园艺, 2018(2):181-185.

    Wang DX, Peng D, Zhang S. Advances in Agrobacte-rium-mediated transformation of woody plants[J]. Northern Horticulture, 2018(2):181-185.

    [56] 陈金慧, 施季森, 诸葛强, 黄敏仁. 植物体细胞胚胎发生机理的研究进展[J]. 南京林业大学学报(自然科学版), 2003, 27(1):75-80.

    Chen JH, Shi JS, Zhu GQ, Huang MR. Progress on the mechanism of somatic embryogenesis of plants and research trends[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2003, 27(1):75-80.

    [57] 刘昱, 付濛濛, 安栋梁, 叶霞, 郑先波, 等. 葡萄体细胞胚发生及遗传转化体系研究进展[J]. 分子植物育种, 2018, 16(18):6068-6079.

    Liu Y, Fu MM, An DL, Ye X, Zheng XB, et al. Research progress on somatic embryogenesis and genetic transformation system in grape[J]. Molecular Plant Breeding, 2018, 16(18):6068-6079.

    [58] 谭和平, 周李华, 钱杉杉, 李怀平, 叶德萍. 茶树转基因技术研究进展[J]. 植物科学学报, 2009, 27(3):323-326.

    Tan HP, Zhou LH, Qian SS, Li HP, Ye DP. Advances on transgenic technique in tea plant[J]. Plant Science Journal, 2009, 27(3):323-326.

    [59] 王毅军, 严学成, 暨淑仪, 魏新姐. 茶(Camellia sinensis Kuntze)离体培养体细胞胚胎发生的组织细胞学研究[J]. 热带亚热带植物学报, 1994, 2(2):47-51.

    Wang YJ, Yan XC, Ji SY, Wei XJ. Histo-cytological study on somatic embryogenesis from the leaf of Camellia sinensis Kuntze[J]. Journal of Tropical and Subtropical Botany, 1994, 2(2):47-51.

    [60] 张广辉, 吕才有, 段红星. 茶树离体植株再生与遗传转化[J]. 分子植物育种, 2010, 8(2):345-349.

    Zhang GH, Lü CY, Duan HX. Plant regeneration and genetic transformation in Camellia sinensis[J]. Molecular Plant Breeding, 2010, 8(2):345-349.

    [61] 雷攀登, 吴琼, 徐奕鼎, 王烨军, 丁勇, 等. 茶树腋芽离体培养中的褐化控制研究[J]. 中国农学通报, 2012, 28(7):190-193.

    Lei PD, Wu Q, Xu YD, Wang YJ, Ding Y, et al. Prevent browning of axillary buds in vitro culture of Camellia sinensis[J]. Chinese Agricultural Science Bulletin, 2012, 28(7):190-193.

    [62] 田丽丽, 李娟, 张静, 刘建军, 王坤波, 等. 不同诱导条件对茶树体胚诱导及增殖的影响[J]. 分子植物育种, 2017, 15(2):669-671.

    Tian LL, Li J, Zhang J, Liu JJ, Wang KB, et al. The effect on embryogenic induction and proliferation of Camellia sinensis in different inductive condition[J]. Molecular Plant Breeding, 2017, 15(2):669-671.

    [63]

    Sandal I, Bhattacharya A, Saini U, Kaur D, Sharma S, et al. Chemical modification of L-glutamine to alpha-amino glutarimide on autoclaving facilitates Agrobacterium infection of host and non-host plants:a new use of a known compound[J]. BMC Chem Biol, 2011, 11:1.

    [64]

    Kumar N, Gulati A, Bhattacharya A. L-Glutamine and L-Glutamic acid facilitate successful Agrobacterium infection of recalcitrant tea cultivars[J]. Appl Biochem Biotech, 2013, 170:1649-1664.

    [65]

    Alagarsamy K, Shamala LF, Wei S. Influence of media supplements on inhibition of oxidative browning and bacterial endophytes of Camellia sinensis var. sinensis[J]. Biotech, 2018, 8(8):356.

    [66] 杨亚萍, 李永兰, 梁月荣, 陆建良, 郑新强. 发根农杆菌抑菌剂的抑菌效果及对茶组培苗丛生芽的影响[J]. 茶叶科学, 2015, 35(5):437-442.

    Yang YP, Li YL, Liang YR, Lu JL, Zheng XQ. Antibiotics inhibition to Agrobaceterium rhizogenes and effect to tea multiple shoots[J]. Journal of Tea Science, 2015, 35(5):437-442.

    [67] 岳川, 曾建明, 章志芳, 王新超, 曹红利. 茶树中植物激素研究进展[J]. 茶叶科学, 2012, 32(5):382-392.

    Yue C, Zeng JM, Zhang ZF, Wang XC, Cao HL. Research progress in the phytohormone of tea plant(Came-llia sinensis)[J]. Journal of Tea Science, 2012, 32(5):382-392.

    [68]

    Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, et al. Plant gene editing through de novo induction of meristems[J]. Nat Biotechnol, 2020, 38:84-89.

计量
  • 文章访问数:  680
  • HTML全文浏览量:  14
  • PDF下载量:  490
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09
  • 修回日期:  2021-03-26
  • 网络出版日期:  2022-10-31
  • 发布日期:  2021-08-27

目录

    /

    返回文章
    返回