Research progress on annotation and biological function of plant transposable elements
-
摘要: 转座元件是指在基因组中能够移动、复制并重新整合到基因组新位点的DNA片段。在植物中,多种类型的转座元件,特别是占比较高的LTR类逆转录转座元件,可以通过产生新基因和转录本、提供调节元件、改变基因结构等多种途径广泛调控基因表达,最终多维度有效推动基因组进化。同时,基因组测序组装技术的快速发展也为转座元件的检测、注释提供了良好契机。本文从结构分类、全基因组检测、功能研究、基因组进化4个方面对当前植物转座元件的研究进展进行综述,同时对今后的研究方向进行了展望。Abstract: Transposable elements (TEs) are fragments of DNA that can move, copy, and re-integrate into a new site in the genome. In plants, many types of TEs, especially abundant long terminal repeat (LTR) retrotransposons, can regulate gene expression in multiple ways, such as producing new genes and transcripts, providing regulatory elements, and changing gene structure. Ultimately, these changes promote plant genome evolution. At the same time, the rapid development of genome sequencing and assembly technology has provided a good opportunity for TE detection and annotation. In this review, we summarize current research progress on plant TEs from the perspectives of structural classification, whole-genome detection, functional research, and genome evolution. We also discuss future research directions and provide references for further plant TE study.
-
-
[1] Charlesworth B, Sniegowski P, Stephan W. The evolutio-nary dynamics of repetitive DNA in eukaryotes[J]. Nature, 1994, 371(6494):215-220.
[2] 李宏. 转座子的起源及其和物种进化的关系[J]. 渝州大学学报, 1993, 25(1):47-56. Li H. The origin of transposons and their relation to species evolutions[J]. Journal of Yuzhou University, 1993, 25(1):47-56.
[3] Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, et al. A unified classification system for eukaryotic transposable elements[J]. Nat Rev Genet, 2007, 8(12):973-982.
[4] Jönsson ME, Garza R, Johansson PA, Jakobsson J. transposable elements:a common feature of neuro deve-lopmental and neuro degenerative disorders[J]. Trends Genet, 2020, 36(8):610-623.
[5] Ohshima K, Hamada M, Terai Y, Okada N. The 3' ends of tRNA-derived short interspersed repetitive elements are derived from the 3' ends of long interspersed repetitive elements[J]. Mol Cell Biol, 1996, 16(7):3756-3764.
[6] 程旭东, 凌宏清. 植物基因组中的非LTR反转录转座子SINEs和LINEs[J]. 遗传, 2006, 28(6):731-736. Cheng XD, Ling HQ. Non-LTR Retrotransposons:LINEs and SINEs in plant genome[J]. Hereditas, 2006, 28(6):731-736.
[7] Roller M, Stamper E, Villar D, Izuogu O, Martin F, et al. LINE retrotransposons characterize mammalian tissue-specific and evolutionarily dynamic regulatory regions[J]. Genome Biol, 2021, 22(1):62.
[8] Levin HL, Moran JV. Dynamic interactions between transposable elements and their hosts[J]. Nat Rev Genet, 2011, 12(9):615-627.
[9] Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, et al. Characterization of the yeast transcriptome[J]. Cell, 1997, 88(2):243-251.
[10] Schuster SC. Next-generation sequencing transforms today's biology[J]. Nat Methods, 2008, 5(1):16-18.
[11] Shendure J, Ji H. Next-generation DNA sequencing[J]. Nat Biotechnol, 2008, 26(10):1135-1145.
[12] Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, et al. Accurate whole human genome sequencing using reversible terminator chemistry[J]. Nature, 2008, 456(7218):53-59.
[13] Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning[J]. Genome Res, 2008, 18(7):1051-1063.
[14] Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time(SMRT) sequencing comes of age:applications and utilities for medical diagnostics[J]. Nucleic Acids Res, 2018, 46(5):2159-2168.
[15] Rhoads A, Au KF. PacBio sequencing and its applications[J]. Genom Proteom Bioinf, 2015, 13(5):278-289.
[16] Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome[J]. Science, 2009, 326(5950):289-293.
[17] Goerner-Potvin P, Bourque G. Computational tools to unmask transposable elements[J]. Nat Rev Genet, 2018, 19(11):688-704.
[18] Tempel S. Using and understanding RepeatMasker[J]. Methods Mol Biol, 2012, 859:29-51.
[19] Li X, Kahveci T, Settles AM. A novel genome-scale repeat finder geared towards transposons[J]. Bioinformatics, 2008, 24(4):468-476.
[20] Daron J, Glover N, Pingault L, Theil S, Jamilloux V, et al. Organization and evolution of transposable elements along the bread wheat chromosome 3B[J]. Genome Biol, 2014, 15(12):546.
[21] Kennedy RC, Unger MF, Christley S, Collins FH, Madey GR. An automated homology-based approach for identi-fying transposable elements[J]. BMC Bioinformatics, 2011, 12(1):130.
[22] Rho M, Choi JH, Kim S, Lynch M, Tang H. De novo identification of LTR retrotransposons in eukaryotic genomes[J]. BMC Genomics, 2007, 8:90.
[23] Ou S, Su W, Liao Y, Chougule K, Agda JRA, Hellinga AJ, et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline[J]. Genome Biol, 2019, 20(1):275.
[24] Ewing AD, Kazazian HH Jr. High-throughput sequencing reveals extensive variation in humanspecific L1 content in individual human genomes[J]. Genome Res, 2010, 20(9):1262-1270.
[25] Agarwal P, States DJ. The Repeat Pattern Toolkit (RPT):analyzing the structure and evolution of the C. elegans genome[J]. Proc Int Conf Intell Syst Mol Biol, 1994, 2:1-9.
[26] Bao Z, Eddy SR. Automated de novo identification of repeat sequence families in sequenced genomes[J]. Genome Res, 2002, 12(8):1269-1276.
[27] Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes[J]. Bioinformatics, 2005, S1:i351-i358.
[28] Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, et al. RepeatModeler2 for automated genomic discovery of transposable element families[J]. Proc Natl Acad Sci USA, 2020, 117(17):9451-9457.
[29] Schaeffer CE, Figueroa ND, Liu X, Karro JE. phRAIDER:Pattern-Hunter based rapid ab initio detection of elementary repeats[J]. Bioinformatics, 2016, 32(12):i209-i215.
[30] Su W, Gu X, Peterson T. TIR-Learner, a New ensemble method for TIR transposable element annotation, provides evidence for abundant new transposable elements in the maize genome[J]. Mol Plant, 2019, 12(3):447-460.
[31] Edgar RC, Myers EW. PILER:identification and classification of genomic repeats[J]. Bioinformatics, 2005, 21(S1):i152-i158.
[32] Valencia JD, Girgis HZ. LtrDetector:A tool-suite for detecting long terminal repeat retrotransposons de-novo[J]. BMC Genomics, 2019, 20(1):450.
[33] Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons[J]. BMC Bioinformatics, 2008, 9(1):18.
[34] Steinbiss S, Willhoeft U, Gremme G, Kurtz S. Finegrained annotation and classification of de novo predicted LTR retrotransposons[J]. Nucleic Acids Res, 2009, 37(21):7002-7013.
[35] Xu Z, Wang H.LTR_FINDER:[BFY] an efficient tool for the prediction of full-length LTR retrotransposons[J]. Nucleic Acids Res, 2007, 35(S2):W265-W268.
[36] Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter:the manifold applications of repeat analysis on a genomic scale[J]. Nucleic Acids Res, 2001, 29(22):4633-4642.
[37] Novák P, Neumann P, Macas J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2[J]. Nat Protoc, 2020, 15(11):3745-3776.
[38] Goubert C, Modolo L, Vieira C, ValienteMoro C, Mavingui P, Boulesteix M. De novo assembly and annotation of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti)[J]. Genome Biol Evol, 2015, 7(4):1192-1205.
[39] Goerner-Potvin P, Bourque G. Computational tools to unmask transposable elements[J]. Nat Rev Genet, 2018, 19(11):688-704.
[40] Guo R, Li YR, He S, Ou-Yang L, Sun Y, Zhu Z. RepLong:de novo repeat identification using long read sequencing data[J]. Bioinformatics, 2018, 34(7):1099-1107.
[41] Kelleher ES, Barbash DA, Blumenstiel JP. Taming the turmoil within:new insights on the containment of transposable elements[J]. Trends Genet, 2020, 36(7):474-489.
[42] Caspi A, Pachter L. Identification of transposable elements using multiple alignments of related genomes[J]. Genome Res, 2006, 16(2):260-270.
[43] Rho M, Choi JH, Kim S, Lynch M, Tang H. De novo identification of LTR retrotransposons in eukaryoticgenomes[J]. BMC Genomics, 2007, 8(1):90.
[44] Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements:from conflicts to benefits[J]. Nat Rev Genet, 2017, 18(2):71-86.
[45] 崔勰奎, 曹晓风. 高等植物转座元件功能研究进展[J]. 生物化学与生物物理进展, 2015, 42(11):1033-1046. Cui XK, Cao XF. Overview of the function of transposable elements in higher plants[J]. Progress in Biochemistry and Biophysics, 2015, 42(11):1033-1046.
[46] McCue AD, Nuthikattu S, Reeder SH, Slotkin RK. Gene expression and stress response mediated by the epigene-tic regulation of a transposable element small RNA[J]. PLoS Genet, 2012, 8(2):e1002474.
[47] Mccue AD, Slotkin RK. Transposable element small RNAs as regulators of gene expression[J]. Trends Genet, 2012, 28:616-623.
[48] Yan Y, Zhang Y, Yang K, Sun Z, Fu Y, et al. Small RNAs from MITE-derived stem-loop precursors regulate abscisic acid signaling and abiotic stress responses in rice[J]. Plant J, 2011, 65(5):820-828.
[49] Kobayashi S, Gotoyamamoto N, Hirochika H. Retrotransposon-induced mutations in grape skin color[J]. Science, 2004, 304(5673):982.
[50] Shure M, Wessler S, Fedoroff N. Molecular identification and isolation of the Waxy locus in maize[J]. Cell, 1983, 35(1):225-233.
[51] Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges[J]. Plant Cell, 2012, 24(3):1242-1255.
[52] Selinger DA, Chandler VL. B-Bolivia, an allele of the maize[STXFX] b1[STXFZ] gene with variable expression, contains a high copy retrotransposon-related sequence immediately upstream[J]. Plant Physiol, 2001, 125(3):1363-1379.
[53] Bhattacharyya MK, Smith AM, Ellis TH, Hedley C, Martin C. The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme[J]. Cell, 1990, 60(1):115-122.
[54] Wendel JF, Cronn RC, Johnston JS, Price HJ. Feast and famine in plant genomes[J]. Genetica, 2002, 115(1):37-47.
[55] Petrov DA. Mutational equilibrium model of genome size evolution[J]. Theor Popul Biol, 2002, 61(4):531-544.
[56] Gregory TR. Insertion-deletion biases and the evolution of genome size[J]. Gene, 2004, 324:15-34.
[57] Hawkins JS, Grover CE, Wendel JF. Repeated big bangs and the expanding universe:directionality in plant genome size evolution[J]. Plant Sci, 2008,174(6):557-562.
[58] Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, et al. The B73 maize genome:complexity, diversity, and dynamics[J]. Science, 2009, 326(5956):1112-1115.
[59] Lin J, Cai Y, Huang G, Yang Y, Li Y, et al. Analysis of the chromatin binding affinity of retrotransposases reveals novel roles in diploid and tetraploid cotton[J]. J Integr Plant Biol, 2019, 61(1):32-44.
[60] Huang G, Wu Z, Percy RG, Bai M, Li Y, et al. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution[J]. Nat Genet, 2020, 52(5):516-524.
[61] Li G, Wang L, Yang J, He H, Jin H, et al. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes[J]. Nat Genet, 2021, 53(4):574-584.
[62] Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, et al. Doubling genome size without polyploidization:dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice[J]. Genome Res, 2006, 16(10):1262-1269.
[63] Jia J, Xie Y, Cheng J, Kong C, Wang M, et al. Homo-logy-mediated inter-chromosomal interactions in hexaploid wheat lead to specific subgenome territories following polyploidization and introgression[J]. Genome Biol, 2021, 22(1):26.
[64] Thomas CA. The genetic organization of chromosomes[J]. Annu Rev Genet, 1971, 5:237-256.
[65] Freeling M, Thomas BC. Gene-balanced duplications, like Tetraploidy, provide predictable drive to increase morphological complexity[J]. Genome research, 2006, 16(7):805-814.
[66] Woodhouse MR, Cheng F, Pires JC, Lisch D, Freeling M, Wang X. Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids[J]. Proc Natl Acad Sci USA, 2014, 111(14):5283-5288.
[67] Hollister JD, Gaut BS. Epigenetic silencing of transposable elements:a trade-off between reduced transposition and deleterious effects on neighboring gene expression[J]. Genome Res, 2009, 19(8):1419-1428.
[68] El Baidouri M, Kim KD, Abernathy B, Arikit S, Maumus F, et al. A new approach for annotation of transposable elements using small RNA mapping[J]. Nucleic Acids Res, 2015, 43(13):e84.
计量
- 文章访问数: 618
- HTML全文浏览量: 16
- PDF下载量: 435