高级检索+

果树成花转变途径与调控研究进展

楚乐乐, 刘海强, 盛星星, 郑玮璇, 龚赞, 胡春根, 张金智

楚乐乐, 刘海强, 盛星星, 郑玮璇, 龚赞, 胡春根, 张金智. 果树成花转变途径与调控研究进展[J]. 植物科学学报, 2022, 40(2): 281-290. DOI: 10.11913/PSJ.2095-0837.2022.20281
引用本文: 楚乐乐, 刘海强, 盛星星, 郑玮璇, 龚赞, 胡春根, 张金智. 果树成花转变途径与调控研究进展[J]. 植物科学学报, 2022, 40(2): 281-290. DOI: 10.11913/PSJ.2095-0837.2022.20281
Chu Le-Le, Liu Hai-Qiang, Sheng Xing-Xing, Zheng Wei-Xuan, Gong Zan, Hu Chun-Gen, Zhang Jin-Zhi. Research progress on the pathways and regulation of flowering transformation in fruit trees[J]. Plant Science Journal, 2022, 40(2): 281-290. DOI: 10.11913/PSJ.2095-0837.2022.20281
Citation: Chu Le-Le, Liu Hai-Qiang, Sheng Xing-Xing, Zheng Wei-Xuan, Gong Zan, Hu Chun-Gen, Zhang Jin-Zhi. Research progress on the pathways and regulation of flowering transformation in fruit trees[J]. Plant Science Journal, 2022, 40(2): 281-290. DOI: 10.11913/PSJ.2095-0837.2022.20281

果树成花转变途径与调控研究进展

基金项目: 

国家重大研发计划(2018YFD1000104);国家自然科学基金(31772252;31972356)。

详细信息
    作者简介:

    楚乐乐(1995-),男,博士研究生,研究方向为果树发育分子生物学(E-mail:Lele_keven@163.com)。

    通讯作者:

    胡春根,E-mail:chungen@mail.hzau.edu.cn

    张金智,E-mail:jinzhizhang@mail.hzau.edu.cn

  • 中图分类号: Q943.2

Research progress on the pathways and regulation of flowering transformation in fruit trees

Funds: 

This work was supported by grants from the National Key R&D Program(2018YFD1000104) and National Natural Science Foundation of China(31772252, 31972356).

  • 摘要: 植物成花转变是营养生长向生殖生长转变的过程,木本果树过长的童期严重制约了育种的进程。相对于模式植物,目前对果树成花转变与调控的研究相对较少。因此,了解并掌握果树成花转变的途径及调控方法,对于缩短果树童期、调控开花,加速果树育种具有重要意义。基于近年来国内外相关研究,本文系统总结了果树的成花途径,阐述了果树栽培措施、植物生长调节剂等成花调控方法,以及果树中成花调控的相关基因及网络机制。最后,本文还对以修饰组学为主的多组学以及嫁接和植物生长调节剂在果树成花调控中的研究前景进行了展望。
    Abstract: Floral transformation is the transition process of plant vegetative growth to reproductive growth. The long juvenile period in woody fruit trees inhibits the process of plant breeding. Compared with model plants, limited studies have been conducted on the mechanism and regulation of fruit tree flowering transformation. Therefore, understanding the pathways and controlling methods of fruit tree blooming are significant for shortening the fruit tree juvenile period, regulating flowering time, and accelerating fruit tree breeding. Based on recent research, we summarized the flowering pathways, cultivation measures, plant growth regulation, and regulation network mechanism of flower formation in fruit trees. Finally, we also discussed future prospects of multi-omics research as well as grafting and plant growth regulators in the regulation of flower formation in fruit trees.
  • [1]

    Meng LS, Bao QX, Mu XR, Tong C, Loake GJ. Glucose and sucrose-signaling modules regulate the Arabidopsis juvenile-to-adult phase transition[J]. Cell Rep, 2021, 36(2):109348.

    [2]

    Fouracre JP, He J, Chen VJ, Sidoli S, Poethig RS. VAL genes regulate vegetative phase change via miR156-dependent and independent mechanisms[J]. PLoS Genet, 2021, 17(6):e1009626.

    [3]

    Jin S, Hoon AJ. Regulation of flowering time by ambient temperature:repressing the repressors and activating the activators[J]. New Phytol, 2021, 230(3):938-942.

    [4]

    Hoon JJ, Antonio DB, Stephanie H, Janet RK, Gao MJ, et al. A prion-like domain inELF3 functions as a thermosensor in Arabidopsis[J]. Nature, 2020, 585(7824):256-260.

    [5]

    Blumel M, Dall YN, Jung C. Flowering time regulation in crops-what did we learn from Arabidopsis?[J]. Curr Opin Biotechnol, 2015, 32:121-129.

    [6]

    Visser T. Juvenile phase and growth of apple and pear seedlings[J]. Euphytica, 1964,13(2):119-129.

    [7]

    Guan QJ, Ma HY, Wang ZJ, Wang ZY, Bu QY, Liu SK. A rice LSD1-like-type ZFP geneOsLOL5enhances saline-alkaline tolerance in transgenic Arabidopsis thaliana, yeast and rice[J]. BMC Genomics, 2016, 17(1):142.

    [8]

    Sun MZ, Jia BW, Cui N, Wen YD, Duanmu HZ, et al. Functional characterization of a Glycine soja Ca2+ATPase in salt-alkaline stress responses[J]. Plant Mol Biol, 2016, 90(4-5):419-434.

    [9]

    Poethig RS. Phase change and the regulation of shoot morphogenesis in plants[J]. Science,1990, 250(4983):923-930.

    [10]

    Zhang XZ, Zhao YB, Li CM, Chen DM, Wang GP, et al. Potential polyphenol markers of phase change in apple (Malus domestica)[J]. J Plant Physiol, 2007, 164(5):574-580.

    [11]

    Federico V, Aidyn M, Wim S, Dean R, Alon S, et al. Photoreceptor regulation of constans protein in photoperiodic flowering[J].Science, 2004, 303(5660):1003-1006.

    [12]

    Hayama R, Coupland G. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice[J]. Plant Physiol, 2004, 135(2):677-684.

    [13]

    Laurent C, Coral V, Seonghoe J, Fabio F, Qingzhi F, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis[J]. Science, 2007, 316(5827):1030-1033.

    [14]

    Doyle MR, Davis SJ, Bastow RM, Watters HG, Kozma-Bognar L, et al. TheELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana[J]. Nature, 2002, 419(6902):74-77.

    [15]

    Jia TQ, Wei DF, Meng SH, Allan AC, Zeng LH. Identification of regulatory genes implicated in continuous flowering of longan (Dimocarpus longan L.)[J]. PLoS One, 2014, 9(12):e114568.

    [16] 付志远, 贾天琦, 彭媛, Saquib W, 曾黎辉. 龙眼ELF4同源基因的克隆与功能研究[J]. 园艺学报, 2018, 45(5):875-886.

    Fu ZY, Jia TQ, Peng Y, Saquib W, Zeng LH. Cloning and function analysis ofELF4 homolog genes in Dimocarpus longan[J]. Acta Horticulturae Sinica, 2018, 45(5):875-886.

    [17]

    Huang FN, Fu ZY, Zeng LH, Morley-bunker M. Isolation and characterization of GI andFKF1homologous genes in the subtropical fruit tree Dimocarpus longan[J]. Mol Breeding, 2017, 37(7):90.

    [18]

    Winterrhagen P, Tiyayon P, Samach A, Hegele M, Wunsche N. Isolation and characterization of FLOWERING LOCUS T subforms andAPETALA1 of the subtropical fruit tree Dimocarpus longan[J]. Plant Physiol Bioch, 2013,71(10):184-190.

    [19]

    Ahn JH, Miller D, Winter VJ, Banfield MJ,Lee JH, et al. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1[J]. Embo J, 2014, 25(3):605-614.

    [20]

    Kotoda N, Iwanami H, Takahashi S, Abe K. Antisense expression ofMdTFL1, a TFL1-like gene, reduces the juve-nile phase in apple[J]. J Am Soc Hortic Sci, 2006, 131(1):46-50.

    [21]

    Abe K, Molecur AR. characterization of FLOWERING LOCUS T-like genes of apple (Malus x domestica Borkh.)[J]. Plant Cell Physiol, 2010, 51(4):561-575.

    [22]

    Varkonyi-Gasic E, Moss SMA, Voogd C, Wang T, Putterill J, et al. Homologs of FT, CEN and FD respond to deve-lopmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit[J]. New Phytol, 2013,198(3):732-746.

    [23]

    Voogd C, Brian LA, Wang T, Allan AC, Varkonyi-Gasic E. Three FT and multiple CEN and BFT genes regulate maturity, flowering, and vegetative phenology in kiwifruit[J]. J Exp Bot, 2017(7):1539-1553.

    [24]

    Song GQ, Tianyi WA, Chen QX, Han XM, Irina ZL. VcFT-induced mobile florigenic signals in transgenic and transgrafted blueberries[J]. Hortic Res, 2019, 6(1):105.

    [25]

    Freiman A, Golobovitch S, Yablovitz Z, Belausov E, Dahan Y, et al. Expression of flowering locus T2 transgene from Pyrus communis L. delays dormancy and leaf senescence in Malus×domestica Borkh. and causes early flo-wering in tobacco[J]. Plant Sci, 2015, 241:164-176.

    [26]

    Mimidai N, Komori S, Suzuki A, Wada M. Functions of the appleTFL1/FT orthologs in phase transition[J]. Sci Hortic, 2013, 156:106-112.

    [27]

    Auge GA, Penfield S, Donohue K. Pleiotropy in developmental regulation by flowering-pathway genes:is it an evolutionary constraint?[J]. New Phytol, 2019, 224(1):55-70.

    [28]

    Johanson U, West J, Lister C, Michaels SD, Dean C, et al. Molecular analysis of FRIDIDA, a major determinant of natural variation in Arabidopsis flowering time[J]. Science, 2000, 290(5490):344-347.

    [29]

    Hyn KG, Oh JE, Park J, Noh YS, Song JJ. Structural analysis of FRIGIDA Flowering-Time regulator[J]. Mol Plant, 2016, 9(4):618-620.

    [30]

    Chen W, Wang P, Wang D, Shi M, Liang G. EjFRI, FRIGIDA (FRI) ortholog from Eriobotrya japonica, delays flowering in Arabidopsis[J]. Int J Mol Sci, 2020, 21(3):1087.

    [31]

    Auge GA, Penfield S, Donohue K. Pleiotropy in developmental regulation by flowering-pathway genes:is it an evolutionary constraint?[J]. New Phytol, 2019, 224(1):55-70.

    [32]

    Kumar G, Arya P, Guptak RV, Acharya V, Singh AK. Comparative phylogenetic analysis and transcriptional profiling of mads-box gene family identified dam and flc-like genes in apple (Malus x domestica)[J]. Sci Rep, 2016, 6(1):20695.

    [33]

    Zong XJ, Zhang YG, Tomaszewski EM, Callow P, Zhong GY, et al. Constitutive expression of an appleFLC3-like gene promotes flowering in transgenic blueberry under nonchilling conditions[J]. Int J Mol Sci, 2019, 20(11):2775.

    [34]

    Matias M, Borsnai O, Pedro D, Rivas F. Relationship between flower intensity; oxidative damage and protection in citrus under water stress conditions[J]. Acta Hortic, 2015, 1065:1243-1249.

    [35] 祁广俊, 刘德兵, 魏军亚, 党志国. 芒果FLC同源基因的克隆和表达分析[J]. 分子植物育种, 2020, 18(18):5951-5957.

    Qi GJ, Liu DB, Wei JY, Dang ZG. Cloning and expression analysis of FLC homologous gene of Mangifera indica L.[J]. Molecular Plant Breeding, 2020,18(18):5951-5957.

    [36]

    Blazquez MA, Ahn JH, Weigel D. A thermosensory pathway controlling flowering time in Arabidopsis thaliana[J]. Nature Genet, 2003, 33(2):168-171.

    [37]

    Xu DQ. Multifaceted roles ofPIF4 in plants[J]. Trends Plant Sci, 2018, 23(9):749-751.

    [38]

    Gangappa SN, Kumar SV. DET1 and HY5 controlPIF4-mediated thermosensory elongation growth through distinct mechanisms[J]. Cell Rep, 2017, 18(2):344-351.

    [39]

    Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, et al. Transcription factorPIF4 controls the thermosensory activation of flowering[J]. Nature, 2012, 484(7393):242-245.

    [40] 张行行, 任传坤, 白团辉, 焦健, 王苗苗, 等. 苹果MdPIF4基因克隆、表达与功能验证[J]. 分子植物育种, 2021, 19(18):5962-5974.

    Zhang HH, Ren CK, Bai TH, Jiao J, Wang MM, et al. Cloning, expression and function analysis of applemdPIF4gene[J]. Molecular Plant Breeding, 2021, 19(18):5962-5974.

    [41] 石玲玲, 王之, 李志英, 雷明, 徐立. 蜻蜓凤梨AfPIF4-1基因的克隆与遗传转化[J]. 分子植物育种, 2016, 14(1):66-71.

    Shi LL, Wang Z, Li ZY, Lei M, Xu L. Cloning and genetic transformation ofAfPIF4-1 in Aechmea fasciata[J]. Molecular Plant Breeding, 2016, 14(1):66-71.

    [42]

    Hartmann U, Hohmann S, Nettesheim K, Wisman E, Saedlar H, et al. Molecular cloning of SVP:a negative regulator of the floral transition in Arabidopsis[J]. Plant J, 2010, 21(4):351-360.

    [43]

    Walton RM, Richardson EF, Wood AC, Hellens RP, Varkony G. Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering[J]. J Exp Bot, 2012,63(2):797-807.

    [44]

    Li ZM, Zhang JZ, Mei L, Deng XX, Hu CG, et al. PtSVP, an SVP homolog from trifoliate orange (Poncirus trifoliate L. Raf.), shows seasonal periodicity of determination and affects flower development in transgenic Arabidopsis and tobacco plants[J]. Plant Mol Biol, 2010, 74(1-2):129-142.

    [45] 李玉静, 陈哲, 胡福初, 阮城城, 罗志文, 等. 菠萝SVP基因对乙烯利刺激的响应[J]. 热带作物学报, 2021, 42(10):2806-2812.

    Li YJ, Chen Z, Hu FH, Ruan CC, Luo ZW, et al. Responses of pineapple SVP genes to ethephon stimulation[J]. Journal of Tropical Crops, 2021, 42(10):2806-2812.

    [46] 王世祥, 左希亚, 邢利博, 樊胜, 张东, 等. 苹果成花抑制蛋白SVP基因的克隆、表达及启动子活性分析[J]. 园艺学报, 2019, 46(8):1445-1457.

    Wang SX, Zuo XY, Xing LB, Fan S, Zhang D, et al. Cloning,expression pattern and promoter activity analysis of flowering regulatory Gene SVP in apple(Malus x domestica)[J]. Acta Horticulturae Sinica, 2019,46(8):1445-1457.

    [47]

    Cheng JZ, Zhou YP, Lv TX, Xie CP, Tian CE. Research progress on the autonomous flowering time pathway in Arabidopsis[J]. Physiol Mol Biol Plants, 2017, 23(3):477-485.

    [48]

    Siriwardana NS, Lamb RS. The poetry of reproduction:the role of LEAFY in Arabidopsis thaliana flower formation[J]. Int J Dev Biol, 2012, 56(4):207-221.

    [49] 范志毅, 罗聪, 余海霞, 曾学梅, 王金英, 等. 芒果MiFY基因克隆和表达模式分析[J]. 热带作物学报, 2021, 42(2):297-302.

    Fan ZY, Luo C, Yu HX, Zeng XM, Wang JY, et al. Cloning and expression analysis of a MiFY gene in mango[J]. Journal of Tropical Crops, 2021, 42(2):297-302.

    [50]

    Ai XY, Zhang JZ, Liu TJ, Hu CG. PtFCA from precocious trifoliate orange is regulated by alternative splicing and affects flowering time and root development in transgenic Arabidopsis[J]. Tree Genet Genomes, 2016, 12(5):85.

    [51] 李丽, 罗轩, 徐立, 李新国. 粉菠萝FVE同源基因的克隆及表达分析[J]. 基因组学与应用生物学, 2013, 32(5):621-626.

    Li L, Luo X, Xu L, Li XG. Cloning and expression analysis of FVE homologous gene from Aechmea fasciata[J]. Genomics and Applied Biology, 2013, 32(5):621-626.

    [52]

    Michio O, Satoki S. Relationship between flower intensity; oxidative damage and protection in citrus under water stress conditions[J]. Acta Hortic, 2015, 102(3):1243-1249.

    [53]

    Maria G, Marti P, Granero B, Pablo GA. Effects of long-term summer deficit irrigation on ‘Navelina’ citrus trees[J]. Agr Water Manage, 2016, 169:140-147.

    [54]

    Ramos A, Rapoport HF, Cabello D, Rallo L. Chilling accumulation, dormancy release temperature, and the role of leaves in olive reproductive budburst:evaluation using shoot explants[J]. Scientia Hortic, 2018, 231(1):241-252.

    [55]

    Samach A, Smith HM. Constraints to obtaining consistent annual yields in perennials.Ⅱ:environment and fruit load affect induction of flowering[J]. Plant Sci, 2013, 207(6):168-176.

    [56]

    Li JX, Hou XJ, Zhu J, Zhou JJ, Huang HB, et al. Identification of genes associated with lemon floral transition and flower development during floral inductive water deficits:a hypothetical model[J]. Front Plant Sci, 2017, 13(8):1013.

    [57]

    Conesa MR, Rosa J, Fernandez-trujillo JP, Domingo R, Perez-pastor A. Deficit irrigation in commercial mandarin trees:Water relations, yield and quality responses at harvest and after cold storage[J]. Span J Agric Res, 2018, 16(3):e1201.

    [58]

    Aldwinckle HS. Flowering of apple seedlings 16-20 months after germination[J]. Hortscience, 1975, 10(2):124-126.

    [59]

    Karnatz A. Effect of gibberellic acid on photoperiod controlled growth in seedlings of black currant (Ribes nigrum L.)[J]. Acta Hortic, 1973, 34:151-156.

    [60]

    Southwick SM, Fritts R. Commercial chemical thinning of stone fruit in California by gibberellins to reduce flowering[J]. Acta Hortic, 1995, 394(394):135-147.

    [61]

    Cline MG. The role of hormones in apical dominance. New approaches to an old problem in plant development[J]. Physiol Plantarum, 2010, 90(1):230-237.

    [62]

    Goldberg-Moeller R, Sholam L, Shlizerman L, Samuels S, Zur N, et al. Effects of gibberellin treatment during flo-wering induction period on global gene expression and the transcription of flowering-control genes in citrus buds[J]. Plant Sci Int J Exp Plant Biol, 2013, 198:46-57.

    [63]

    Ogata T, Hasukawa H, Shiozaki SJ, Horiuchi S, Kawase K, et al. Seasonal changes in endogenous gibberellin contents in satsuma mandarin during flower differentiation and the influence of paclobutrazol on gibberellin synthesis[J]. Engei Gakkai Zasshi, 2008, 65(2):245-253.

    [64]

    Goto OA. Involvement of endogenous plant hormones (IAA, ABA, GAs) in leaves and flower bud formation of satsuma mandarin (Citrus unshiu Marc.)[J]. Scientia Hortic, 1999,79(3-4):185-194.

    [65]

    Ramirez H, Benavides A, Robledo V, Alonse R, Gomez J. Gibberellins and cytokinins related to fruit bud initiation in apple[J]. Acta Hortic, 2004, 636:409-413.

    [66] 王伟, 苏明华, 吴少华, 常强, 李惠华. 龙眼反季节成花过程中内源生长物质动态研究[J]. 热带作物学报, 2015, 36(2):252-257.

    Wang W, Su MH, Wu SH, Chang Q, Li HH. Investigation of endogenous growth substances level changes in off season flower induction of longan(Dimocarpus longan Lour.) trees[J]. Journal of Tropical Crops, 2015, 36(2):252-257.

    [67] 唐丁, 温腾建, 卢龙, 常新, 胡建芳. 赤霉素处理对峰后葡萄开花期的影响及其分子机理[J]. 中国农业大学学报(自然科学版), 2015, 20(6):92-98.

    Tang D, Wen TJ, Lu L, Chang X, Hu JF. Effects of gibberellin treatment on flowering-time of ‘Fenghou’ grapevine and its molecular mechanisms[J]. Journal of China Agricultural University (Natural Science Edition), 2015, 20(6):92-98.

    [68]

    Nagy M, Tari I. The relationship between the growth retardative effect of CCC and ethylene production[J]. Acta Biol Hung, 1986, 37(3-4):295.

    [69]

    Chen X, Tao Z, Wu ZX, Wang L, Fu HZ, et al. Effect of paclobutrazol plus ethephon treatment on endogenous hormones and carbon and nitrogen nutrients in litchi variety ‘Feizixiao’[J]. Agric Sci Technol, 2013, 14(8):1125-1131.

    [70]

    Galston AW, Kaur-sawhney R, Altabella T, Tiburcio AF. Plant polyamines in reproductive activity and response to abiotic stress[J]. Bot Acta, 2015, 110(3):197-207.

    [71]

    Yae BW, Yim YJ, Jo HM. Factors affecting shoot proliferation and root initiation of apple ‘Fuji’ (Malus domestica Borkh.) in vitro[J]. Hortic Environ Biote, 1986, 27(4):353-358.

    [72]

    Relation E. Effects of brief exposure to nitrogenous compounds on floral initiation in apple trees[J]. Physiol Vegeta, 1986, 24(6):673-677.

    [73]

    Anwar G, Ali CJ. 590pb 138 low-temperature stressed-induced flowering of the ‘washington’ navel orange (Citrus sinensis L. Osbeck) was increased by application of putrescine or spermidine to the foliage[J]. Hortic Sci, 1994, 29(5):516.

    [74]

    Edwards RG. Ammonia, arginine, polyamines and flower initiation in apple[J]. Acta Horticult, 1986, 179:363-364.

    [75] 陈东玫, 李春敏, 赵永波, 张新忠, 杨凤秋. 生长调节剂促进苹果实生树提早成花的研究[J]. 河北农业科学, 2008, 12(8):16-17.

    Chen DM, Li CM, Zhao YB, Zhang XZ, Yang FQ. Research on the advanced flower of apple seedlings treated by growth regulators[J]. Journal of Hebei Agricultural Sciences, 2008, 12(8):16-17.

    [76] 阮勇凌, 张上隆, 储可铭, 吴光林, 李世君. 温州蜜柑花芽分化期枝内细胞分裂素类型和脱落酸含量及其变化[J]. 中国农业科学, 1991, 24(1):56-60.

    Run YL, Zhang SL, Chu KM, Wu GL, Li SJ. The types of cytokinins and their changes and abscisic acid in the stem of Citrus reticulata Unshiu during flower bud initiation[J]. Scientia Agricultura Sinica, 1991, 24(1):56-60.

    [77]

    Rakngan J, Gemma H, Iwahiri S. Flower bud formation in japanese pear trees under adverse conditions and effects of some growth regulators[J]. Japan J Tropic Agric, 1995, 39:1-6.

    [78]

    An Z, Yin L, Liu Y, Peng M, Shen W, Dong A. The histone methylation readersMRG1/MRG2 and the histone chaperonesNRP1/NRP2associate in fine-tuning Arabidopsis flowering time[J]. Plant J, 2020, 103(3):6228-6234.

    [79]

    Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, et al.COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis[J]. Plant Cell, 2008, 20(2):292-306.

计量
  • 文章访问数:  566
  • HTML全文浏览量:  15
  • PDF下载量:  338
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 修回日期:  2021-12-21
  • 网络出版日期:  2022-10-31
  • 发布日期:  2022-04-27

目录

    /

    返回文章
    返回