Research progress on establishment and application of genetic transformation system of Salvia miltiorrhiza Bunge
-
摘要: 丹参(Salvia miltiorrhiza Bunge)是我国一种传统的大宗中药材,主要活性成分丹参酮和丹酚酸被广泛用于治疗心脑血管等疾病。建立高效、稳定的遗传转化体系,对丹参进行定向改良,为丹参酮和丹酚酸类成分工业化生产及丹参药材产量与质量提高提供了可能。本文结合国内外的研究,对丹参遗传转化方法进行了系统总结,从外植体、培养基、菌液浓度等影响丹参遗传转化因素方面进行综述。对近5年丹参遗传转化研究的关键酶基因和转录因子进行归纳,并对未来的研究重点进行了展望。Abstract: Salvia miltiorrhiza Bunge is a traditional Chinese medicine widely used in the treatment of cardiovascular and cerebrovascular diseases due to its active components tanshinone and salvianolic acid. The establishment of an efficient and stable genetic transformation system and directional improvement of S. miltiorrhiza provide the possibility for industrial production of tanshinone and salvianolic acid and improvement in S. miltiorrhiza yield and quality. This paper studied both at home and abroad, and has carried on the system summary of S. miltiorrhiza genetic transformation method, from the explants, culture medium and the concentration of microbial factors affecting S. miltiorrhiza genetic transformation were summarized, for nearly five years of S.miltiorrhiza genetic transformation research, summarized the key enzyme genes and transcription factors. The future research focus was prospected to provide reference for improving the efficiency of genetic transformation and promoting the development of S. miltiorrhiza industry.
-
Keywords:
- Salvia miltiorrhiza /
- Genetic transformation /
- Regeneration /
- Transformation method
-
-
[1] 张照亮,任露露,颜小梅,聂昕茹,杨天元.茶树离体再生和遗传转化的研究进展[J].安徽农业大学学报, 2021, 48(5):738-743. Zhang ZL, Ren LL, Yan XM, Nie XR, Yang TY. Research progress on regeneration in vitro and genetic transformation system of Camellia sinensis[J]. Journal of Anhui Agricultural University, 2021, 48(5):738-743.
[2] 肖楠,张学文,龙炎杏,陈金军,谢心,等.黄花蒿腺毛细胞中过表达AaADS基因显著提高青蒿素含量[J].分子植物育种, 2021, 19(16):5389-5397. Xiao N, Zhang XW, Long YX, Chen JJ, Xie X, et al. Overexpression of AaADS gene increase growth of glandular trichomes of Artemisia annua and the content of artemisinin[J]. Molecular Plant Breeding, 2021, 19(16):5389-5397.
[3] 化文平,李世强,孔维维,李翠芹.过表达[STXFX]SmERF1[STXFZ]提高了丹参耐盐性[J].基因组学与应用生物学, 2021, 40(4):1786-1792. Hua WP, Li SQ, Kong WW, Li CQ. Overexpression of[STXFX]SmERF1[STXFZ] improves salt tolerance in Salvia miltiorrhiza[J]. Genomics and Applied Biology, 2021, 40(4):1786-1792.
[4] Su CY, Ming QL, Rahman K, Han T, Qin LP. Salvia mil-tiorrhiza:traditional medicinal uses, chemistry, and pharmacology[J]. Chin J Nat Med, 2015, 13(3):163-182.
[5] 李雯瑞.丹参5个SmGRAS转录因子在调控丹参酮类和酚酸类物质合成中的功能[D].北京:中国科学院大学, 2020:61-86. [6] 王瑞红.过表达SmPsbD对丹参光合作用和酚类化合物生物合成的影响作用研究[D].杨凌:西北农林科技大学, 2020:28-35. [7] 谈荣慧,张金家,赵淑娟.丹参毛状根的诱导及培养条件的优化[J].中国中药杂志, 2014, 39(16):3048-3053. Tan RH, Zhang JJ, Zhao SJ. Optimazation of induction and culture conditions for hairy roots of Salvia miltiorrhiza[J]. China Journal of Chinese Material Medica, 2014, 39(16):3048-3053.
[8] 郭双双.发根农杆菌诱导黄芩毛状根的形成与质量研究[D].长春:吉林农业大学, 2016:14-21. [9] Dai S, Zheng P, Marmey P, Zhang S, Tian W, et al. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment[J]. Mol Breed, 2001, 7:25-33.
[10] 熊换英,钟伟光,张寿文.农杆菌介导的植物遗传转化影响因素研究进展[J].安徽农业科学, 2012, 40(17):9214-9217. Xiong HY, Zhong WG, Zhang SW. Research progress in the influencing factors of Agrobacterium-mediated genetic transformation of plants[J]. Journal of Anhui Agricultural Sciences, 2012, 40(17):9214-9217.
[11] 周达锋,卜学贤.发根农杆菌Ri质粒的分子生物学及其应用前景[J].植物学通报, 1993, 10(2):24-34. Zhou DF, Bu XX. The characters of Ri plasmid and its application prospect[J]. Chinese Bulletin of Botany, 1993, 10(2):24-34.
[12] Sharma P, Padh H, Shrivastava N. Hairy root cultures:a suitable biological system for studying secondary metabo-lic pathways in plants[J]. End Life Sci, 2013,13(1):62-75.
[13] Chandra S. Natural plant genetic engineer Agrobacterium rhizogenes:role of T-DNA in plant secondary metabolism[J]. Biotechnol Lett, 2012, 34(3):407-415.
[14] 朱智慧,晁二昆,钱广涛,孙伟,薛建平,等.药用植物毛状根研究体系及应用方向[J].中国现代中药, 2019, 21(11):1475-1481. Zhu ZH, Chao EK, Qian GT, Sun W, Xue JP, et al. Hairy root system and its application in madicinal plants[J]. Modern Chinese Medicine, 2019, 21(11):1475-1481.
[15] 庞永奇,王梅珍,卢善发.根癌农杆菌注射法介导的丹参遗传转化体系的建立[EB/OL].(2015-11-25)[2022-04-27].http://www.paper.edu.cn/.[BFY] [16] 张换样,李静,朱永红,秦丽霞,竹梦婕,等.丹参叶柄遗传转化体系的建立及[STXFX]EDT1[STXFZ]基因的导入[J].甘肃农业大学学报, 2021, 56(1):66-71. Zhang HY, Li J, Zhu YH, Qin LX, Zhu MJ, et al. Establishment of genetic transformation system of Salvia miltiorrhiza with oetiole as explants and introduction of[STXFX]EDT1[STXFZ] gene[J]. Journal of Gansu Agricultural University, 2021, 56(1):66-71.
[17] 刘晓艳,王渭玲,李学俊.农杆菌Ri诱导丹参毛状根培养体系的优化[J].西北农业学报, 2009, 18(6):183-186. Liu XY, Wang WL, Li XJ. Establishment of hairy roots culture system of Salvia miltiorrhiza[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2009, 18(6):183-186.
[18] 周伟,姚倩雯,钱忠英.丹参毛状根诱导条件的优化[J].上海师范大学学报, 2007, 36(2):93-98. [19] 张夏楠,崔光红,蒋喜红,黄璐琦.丹参转基因毛状根离体培养体系的建立及分析[J].中国中药杂志, 2012, 37(15):2257-2261. [20] 蔡媛,钟灿,谢芳一,沈冰冰,张水寒.基于响应面法对丹参毛状根诱导条件的优化研究[J].湖南中医杂志, 2018, 34(11):144-147. Cai Y, Zhong C, Xie FY, Shen BB, Zhang SH. Optimization of induction conditions of Salvia miltiorrhiza hairy root based on the response surface method[J]. Hunan Journal of Traditional Chinese Medicine, 2018, 34(11):144-147.
[21] Cui GH, Duan LX, Jin BL, Qian J, Xue JY, et al. Functional divergence of diterpene syntheses in the medicinal plant Salvia miltiorrhiza[J]. Plant Physiol, 2015, 169(3):1607-1618.
[22] 张林甦,邵芬娟,秦利军.丹参不同愈伤组织诱导及遗传转化体系优化[J].广西植物, 2017, 37(1):102-108. Zhang LS, Shao FJ, Qin LJ. Callus inducing on different phytohormone media and Agrobacterium-mediated gene-tic transformation system optimizing of Salvia miltiorrhiza[J]. Guihaia, 2017, 37(1):102-108.
[23] 尹艳,张宏晨,徐妍妍,高伟,张夏楠.丹参SmIPI基因RNA干扰表达载体构建及遗传转化[J].生物技术, 2017, 27(4):324-329. Yin Y, Zhang HC, Xu YY, Gao W, Zhang XN. Study on construction and transformation of SmIPI-RNAi vector[J]. Biotechnology, 2017, 27(4):324-329.
[24] Liu Y, Yang SM, Cheng Y, Liu DQ, Zhang Y, et al. Production of herbicide-resistant medicinal plant Salvia miltiorrhiza transformed with the bar gene[J]. Appl Biochem Biotechnol, 2015, 177(7):1456-1465.
[25] Wei T, Gao YH, Deng KJ, Zhang LP, Yang ML, et al. Enhancement of tanshinone production in Salvia miltiorrhiza hairy root cultures by metabolic engineering[J]. Plant Methods, 2019, 15:53.
[26] Kai GY, Xu H, Zhou CC, Liao P, Xiao JB, et al. Metabo-lic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures[J]. Metab Eng, 2011, 13(3):319-327.
[27] Hao GP, Shi RJ, Tao R, Fang Q, Jiang XY, et al. Cloning, molecular characterization and functional analysis of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase (HDR) gene for diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza Bge. f. alba[J]. Plant Physiol Biochem, 2013, 70:21-32.
[28] Li WR, Xing BC, Mao RJ, Bai ZQ, Yang DF, et al. SmGRAS3 negatively responds to GA signaling while promotes tanshinones biosynthesis in Salvia miltiorrhiza[J]. Ind Crop Prod, 2020, 144:112004.
[29] 王宁.[STXFX]SmHY5[STXFZ]对丹参有效成分生源合成及侧根发育的调控作用研究[D].扬州:扬州大学, 2020:11-31. [30] 王斌.丹参SABATH基因家族分子系统进化分析及丹参茉莉酸羧甲基转移酶基因的功能研究[D].西安:陕西师范大学, 2018:87-102. [31] 何金莲.丹参组织培养综述[J].乡村科技, 2020, 11(28):91-92. [32] 刘彩玲.丹参[STXFX]SmCYP94B50[STXFZ]基因克隆与功能分析[D].沈阳:沈阳农业大学, 2020:29-49. [33] 兰英,柳敏,严铸云,谢惠庆,沈晓凤,等.不同地理种源丹参组培快繁及再生苗性状差异比较[J].江苏农业科学, 2016, 44(10):103-107. [34] 刘冬青.不同品系丹参毛状根诱导发生及生产效率的比较研究[D].成都:电子科技大学, 2016:17-22. [35] 亓振翠,许明,李玉梅,高玉民,吕雪峰,等.白花丹参组培快繁技术试验研究[J].农业科技通讯, 2020(4):106-108. [36] Zhang CL, Xing BC, Yang DF, Ren M, Guo H, et al. SmbHLH3 acts as a transcription repressor for both phenolic acids and tanshinone biosynthesis in Salvia mil-tiorrhiza hairy roots[J]. Phytochemistry, 2020,169:112183.
[37] Zhang JH, Lv HZ, Liu WJ, Ji AJ, Zhang X, et al. bHLH transcription factor[STXFX]SmbHLH92[STXFZ]negatively regulates biosynthesis of phenolic acids and tanshinones in Salvia mil-tiorrhiza[J]. Chinese Herbal Medicines, 2020,12(3):237-246.
[38] Xing BC, Liang LJ, Liu L, Hou Z, Yang DF, et al. Overexpression of[STXFX]SmbHLH148[STXFZ]induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots[J]. Plant Cell Rep, 2018, 37(12):1681-1692.
[39] Xing BC, Yang DF, Yu Hz, Zhang Bx, Yan KJ, et al. Overexpression of[STXFX]SmbHLH10[STXFZ]enhances tanshinones biosynthesis in Salvia miltiorrhiza hairy roots[J]. Plant Sci, 2018, 276:229-238.
[40] Wu YC, Zhang Y, Li L, Guo XR, Wang B, et al. AtPAP1 interacts with and activates[STXFX]SmbHLH51,[STXFZ] a positive regulator to phenolic acids biosynthesis in Salvia miltiorrhiza[J]. Front Plant Sci, 2018, 9:1687.
[41] Hao XL, Pu ZQ, Cao G, You DW, Zhou Y, et al. Tanshinone and salvianolic acid biosynthesis are regulated by[STXFX]SmMYB98[STXFZ] in Salvia miltiorrhiza hairy roots[J]. J Adv Res, 2020, 23:1-12.
[42] Li SS, Wu YC, Kuang J, Wang HQ, Du TZ, et al.[STXFX]SmMYB111[STXFZ] is a key factor to phenolic acid biosynthesis and interacts with both[STXFX]SmTTG1 and SmbHLH51[STXFZ] in Salvia miltiorrhiza[J]. J Agric Food Chem, 2018, 66(30):8069-8078.
[43] Zhang JX, Zhou LB, Zheng XY, Zhang JJ, Yang L, et al. Overexpression of[STXFX]SmMYB9b[STXFZ] enhances tanshinone concentration in Salvia miltiorrhiza hairy roots[J]. Plant Cell Rep, 2017, 36(8):1297-1309.
[44] Ding K, Pei TL, Bai ZQ, Jia YY, Ma PD, et al.[STXFX]SmMYB36,[STXFZ] a novel R2R3-MYB transcription factor, enhances tanshinone accumulation and decreases phenolic acid coontent in Salvia miltiorrhiza hairy roots[J]. Sci Rep, 2017, 7(1):5104.
[45] Hao GP, Jiang XY, Feng L, Tao R, Li YL, et al. Cloning, molecular characterization and functional analysis of a putative R2R3-MYB transcription factor of the phenolic acid biosynthetic pathway in S. miltiorrhiza Bge. f. alba[J]. Plant Cell Tiss Org Cult, 2016, 124(1):151-168.
[46] Yang N, Zhou WP, Su J, Wang XF, Li L, et al. Overexpression of SmMYC2 increases the production of phenolic acids in Salvia miltiorrhiza[J]. Front Plant Sci, 2017, 8:1804.
[47] Zhou YY, Sun W, Chen JF, Tan HX, Xiao Y, et al.[STXFX] SmMYC2a and SmMYC2b[STXFZ]played similar but irre-placeable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza[J]. Sci Rep, 2016, 6:22852.
[48] Wang B, Niu JF, Li B, Huang YY, Han LM, et al. Molecular characterization and overexpres-sion of SmJMT increases the production of phenolic acids in Salvia miltiorrhiza[J]. Int J Mol Sci, 2018, 19(12):3788.
[49] Pei TL, Ma PD, Ding K, Liu SJ, Jia YY, et al. SmJAZ8 acts as a core repressor regulating JA-induced biosynthesis of salvianolic acids and tanshinones in Salvia miltiorrhiza hairy roots[J]. J Exp Bot, 2018, 69(7):1663-1678.
[50] Shi M, Zhou W, Zhang JL, Huang SX, Wang HZ, et al. Methyl jasmonate induction of tanshinone biosynthesis in Salvia miltiorrhiza hairy roots is mediated by jasmonate zim-domain repressor proteins[J]. Sci Rep, 2016, 6:20919.
[51] Chen C, Zhang Y, Qiakefu K, Zhang X, Han LM, et al. Overexpression of tomato Prosystemin (LePS) enhances pest resistance and theproduction of tanshinones in Salvia miltiorrhiza Bunge[J]. J Agric Food Chem, 2016, 64(41):7760-7769.
[52] Jia YY, Bai ZQ, Pei TL, Ding K, Liang ZS, et al. The protein kinase SmSnRK2.6 positively regulates phenolic acid biosynthesis in Salvia miltiorrhiza by interacting with[STXFX]SmAREB1[STXFZ] [J]. Front Plant Sci, 2107, 8:1384.
[53] Wang HB, Wei T, Wang X, Zhang LP, Yang ML, et al. Transcriptome analyses from mutant Salvia miltiorrhiza reveals important roles for[STXFX]SmGASA4[STXFZ] during plant development[J]. Int J Mol Sci, 2018, 19(7):2088.
[54] Deng CP, Wang Y, Huang FF, Lu SJ, Zhao LM, et al.[STXFX]SmMYB2[STXFZ] promotes salvianolic acid biosynthesis in the medicinal herb Salvia miltiorrhiza[J]. J Integr Plant Biol, 2020, 62(11):1688-1702.
[55] Li WR, Xing BC, Mao RJ, Bai ZQ, Yang DF, et al. SmGRAS3 negatively responds to GA signaling while promotes tanshinones biosynthesis in Salvia miltiorrhiza[J]. Ind Crop Prod, 2020, 144:112004.
计量
- 文章访问数: 570
- HTML全文浏览量: 24
- PDF下载量: 234