武兆云:附表1
-
-
-
[1] Sze H, Chanroj S, Plant Endomembrane Dynamics:Studies of K+/H+ antiporters provide insights on the effects of pH and ion homeostasis[J]. Plant Physiol, 2018. 177(3):875-895.
[2] Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, et al. Cloning and expression in yeast of a plant potassium ion transport system[J]. Science, 1992. 256(5057):663-665.
[3] Basset M, Conejero G, Lepetit M, Fourcroy P, Sentenac H. Organization and expression of the gene coding for the potassium transport system AKT1 of Arabidopsis thaliana[J]. Plant Mol Biol., 1995. 29(5):947-958.
[4] Hedrich R, Moran O, Conti F, Busch H, Becker D, et al. Inward rectifier potassium channels in plants differ from their animal counterparts in response to voltage and channel modulators[J]. Eur Biophys J, 1995. 24(2):107-115.
[5] Spalding EP, Hirsch RE, Lewis DR, Qi Z, Sussman MR, et al. Potassium uptake supporting plant growth in the absence of AKT1 channel activity:Inhibition by ammonium and stimulation by sodium[J]. J Gen Physiol, 1999. 113(6):909-918.
[6] Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, et al. Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis[J]. Plant Physiol, 2001. 127(3):1012-1019.
[7] Szyroki A, IVashikina N, Dietrich P, Roelfsema MR, Ache P, et al. KAT1 is not essential for stomatal opening[J]. Proc Natl Acad Sci U S A, 2001. 98(5):2917-2921.
[8] Xu J, Li HD, Chen LQ, Wang Y, Liu LL, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis[J]. Cell, 2006. 125(7):1347-1360.
[9] Li L, Kim BG, Cheong YH, Pandey GK, Luan S. A Ca2+signaling pathway regulates a K+ channel for low-K response in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2006. 103(33):12625-12630.
[10] Lee SC, Lan WZ, Kim BG, Li L, Cheong YH, et al. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel[J]. Proc Natl Acad Sci U S A, 2007. 104(40):15959-15964.
[11] Rubio F, Nieves-Cordones M, Alemán F, Martínez V. Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations[J]. Physiol Plant, 2008. 134(4):598-608.
[12] Honsbein A, Sokolovski S, Grefen C, Campanoni P, Pratelli R, et al. A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis[J]. Plant Cell, 2009. 21(9):2859-2877.
[13] Geiger D, Becker D, Voslon D, Gambale F, Palme K, et al. Heteromeric AtKC1.AKT1 Channels in Arabidopsis Roots Facilitate Growth under K+-limiting Conditions[J]. J Biol Chem, 2009. 284(32):21288-21295.
[14] Pyo YJ, Gierth M, Schroeder JI, Cho MH. High-Affinity K+ Transport in Arabidopsis:AtHAK5 and AKT1 Are Vital for Seedling Establishment and Postgermination Growth under Low-Potassium Conditions[J]. Plant Physiol, 2010. 153(2):863-875.
[15] Lan WZ, Lee SC, Che YF, Jiang YQ, Luan S. Mechanistic analysis of AKT1 regulation by the CBL-CIPK-PP2CA interactions[J]. Mol Plant, 2011. 4(3):527-536.
[16] Ren XL, Qi GN, Feng HQ, Zhao S, Zhao SS, et al. Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Arabidopsis[J]. Plant J, 2013. 74(2):258-266.
[17] Marten I, Hoth S, Deeken R, Ache P, Ketchum KA, et al. AKT3, a phloem-localized K+ channel, is blocked by protons[J]. Proc Natl Acad Sci U S A, 1999. 96(13):7581-7586.
[18] Deeken R, Sanders C, Ache P, Hedrich R. Developmental and light-dependent regulation of a phloem-localised K+ channel of Arabidopsis thaliana[J]. Plant J, 2000. 23(2):285-290.
[19] Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, et al. A shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis[J]. Plant Cell, 2000. 12(6):837-851.
[20] Dreyer I, Michard E, Lacombe B, Thibaud JB. A plant Shaker-like K+ channel switches between two distinct gating modes resulting in either inward-rectifying or "leak" current[J]. FEBS Lett, 2001. 505(2):233-239.
[21] Michard E., Dreyer I, Lacombe B, Sentenac H, Thibaud JB. Inward rectification of the AKT2 channel abolished by voltage-dependent phosphorylation[J]. Plant J, 2005. 44(5):783-797.
[22] Michard E, Lacombe B, Porée F, Mueller-Roeber B, Sentenac H, et al. A unique voltage sensor sensitizes the potassium channel AKT2 to phosphoregulation[J]. J Gen Physiol, 2005. 126(6):605-617.
[23] Xicluna J, Lacombe B, Dreyer I, Alcon C, Jeanguenin L, et al. Increased functional diversity of plant K+ channels by preferential heteromerization of the shaker-like subunits AKT2 and KAT2[J]. J Biol Chem, 2007. 282(1):486-494.
[24] Gajdanowicz P, Michard E, Sandmann M, Rocha M, Corrêa LG et al. Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues[J]. Proc Natl Acad Sci U S A, 2011. 108(2):864-869.
[25] Held K, Pascaud F, Eckert C, Gajdanowicz P, Hashimoto K, et al. Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex[J]. Cell Res, 2011. 21(7):1116-1130.
[26] Sandmann M, Lodowski S K, Gajdanowicz P, Michard E, Rocha M, et al. The K+ battery-regulating Arabidopsis K+ channel AKT2 is under the control of multiple post-translational steps[J]. Plant Signal Behav, 2011. 6(4):558-562.
[27] Mouline K, Very A A, Gaymard F, Boucherez J, Pilot G, et al. Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis[J]. Genes Dev, 2002. 16(3):339-350.
[28] Reintanz B,Szyroki A,Ivashikina N, Ache P, Godde M, et al. AtKC1, a silent Arabidopsis potassium channel alpha-subunit modulates root hair K+ influx[J]. Proc Natl Acad Sci U S A, 2002. 99(6):4079-4084.
[29] Pilot G, Gaymard F, Mouline K, Chérel I, Sentenac H. Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant[J]. Plant Mol Biol, 2003. 51(5):773-787.
[30] Duby G, Hosy E, Fizames C, Alcon C, Costa A, et al. AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ channels[J]. Plant J, 2008. 53(1):115-123.
[31] Grefen C, Chen Z, Honsbein A, Donald N, Hills A, et al. A novel motif essential for SNARE interaction with the K+ channel KC1 and channel gating in Arabidopsis[J]. Plant Cell, 2010. 22(9):3076-3092.
[32] Jeanguenin L, Alcon C, Duby G, Boeglin M, Chérel I, et al. AtKC1 is a general modulator of Arabidopsis inward Shaker channel activity[J]. Plant J, 2011. 67(4):570-582.
[33] Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema MR, et al. GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel[J]. FEBS Lett, 2000. 486(2):93-98.
[34] Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle HH, et al. K+ channel profile and electrical properties of Arabidopsis root hairs[J]. FEBS Lett, 2001. 508(3):463-469.
[35] Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, et al. The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration[J]. Proc Natl Acad Sci U S A, 2003. 100(9):5549-5554.
[36] Becker D, Hoth S, Ache P, Wenkel S, Roelfsema MR, et al. Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress[J]. FEBS Lett, 2003. 554(1-2):119-126.
[37] Dreyer I, Poree F, Schneider A, Mittelstädt J, Bertl A, et al. Assembly of plant Shaker-like Kout channels requires two distinct sites of the channel alpha-subunit[J]. Biophys J, 2004. 87(2):858-872.
[38] Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae[J]. Proc Natl Acad Sci U S A, 1992. 89(9):3736-3740.
[39] Schachtman DP, Schroeder JI, Lucas WJ, Anderson JA, Gaber RF. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA[J]. Science, 1992. 258(5088):1654-1658.
[40] Hoshi T. Regulation of voltage dependence of the KAT1 channel by intracellular factors[J]. J Gen Physiol, 1995. 105(3):309-328.
[41] Nakamura RL, McKendree WL Jr, Hirsch RE, Sedbrook JC, Gaber RF, et al. Expression of an Arabidopsis potassium channel gene in guard cells[J]. Plant Physiol, 1995. 109(2):371-374.
[42] Véry AA, Gaymard F, Bosseux C, Sentenac H, Thibaud JB. Expression of a cloned plant K channel in Xenopus oocytes:analysis of macroscopic currents[J]. Plant J, 1995. 7(2):321-332.
[43] Ichida AM, Pei ZM, Baizabal-Aguirre VM, Turner KJ, Schroeder JI. Expression of a Cs+-resistant guard cell K+ channel confers Cs+-resistant, light-induced stomatal opening in transgenic arabidopsis[J]. Plant Cell, 1997. 9(10):1843-1857.
[44] Li J, Lee YR, Assmann SM. Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel[J]. Plant Physiol, 1998. 116(2):785-795.
[45] Hoth S and Hedrich R, Distinct molecular bases for pH sensitivity of the guard cell K+ channels KST1 and KAT1[J]. J Biol Chem, 1999. 274(17):11599-11603.
[46] Berkowitz G, Zhang X, Mercie R, Leng Q, Lawton M. Co-expression of calcium-dependent protein kinase with the inward rectified guard cell K+ channel KAT1 alters current parameters in Xenopus laevis oocytes[J]. Plant Cell Physiol, 2000. 41(6):785-790.
[47] Kwak J M, Murata Y, Baizabal-Aguirre V M, Merrill J, Wang M, et al. Dominant negative guard cell K+ channel mutants reduce inward-rectifying K+ currents and light-induced stomatal opening in arabidopsis[J]. Plant Physiol, 2001. 127(2):473-485.
[48] Pilot G, Lacombe B, Gaymard F, Cherel I, Boucherez J, et al. Guard cell inward K+ channel activity in arabidopsis involves expression of the twin channel subunits KAT1 and KAT2[J]. J Biol Chem, 2001. 276(5):3215-3221.
[49] Sutter J U, Campanoni P, Tyrrell M, Blatt MR. Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane[J]. Plant Cell, 2006. 18(4):935-954.
[50] Sottocornola B, Visconti S, Orsi S, Gazzarrini S, Giacometti S, et al. The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins[J]. J Biol Chem, 2006. 281(47):35735-35741.
[51] Ivashikina N, Deeken R, Fischer S, Ache P, Hedrich R. AKT2/3 subunits render guard cell K+ channels Ca2+sensitive[J]. J Gen Physiol, 2005. 125(5):483-492.
[52] Lebaudy A, Pascaud F, Véry AA, Alcon C, Dreyer I, et al. Preferential KAT1-KAT2 heteromerization determines inward K+ current properties in Arabidopsis guard cells[J]. J Biol Chem, 2010. 285(9):6265-6274.
[53] Gaymard F, PilotG, Lacombe B, Bouchez D, Bruneau D, et al. Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap[J]. Cell, 1998. 94(5):647-655.
[54] Lacombe B, Pilot G, Gaymard F, Sentenac H, Thibaud JB. pH control of the plant outwardly-rectifying potassium channel SKOR[J]. FEBS Lett, 2000. 466(2-3):351-354.
[55] Johansson I, Wulfetange K, Poree F, Michard E, Gajdanowicz P, et al. External K+ modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism[J]. Plant J, 2006. 46(2):269-281.
[56] Garcia-Mata C, Wang J, Gajdanowicz P, Gonzalez W, Hills A, et al. A minimal cysteine motif required to activate the SKOR K+ channel of Arabidopsis by the reactive oxygen species H2O2[J]. J Biol Chem, 2010. 285(38):29286-29294.
[57] Zhao LN, Shen LK, Zhang WZ, Zhang W, Wang Y, et al. Ca2+-dependent protein kinase11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes[J]. Plant Cell, 2013. 25(2):649-661.
[58] Deeken R, Ivashikina N, Czirjak T, Philippar K, Becker D, et al. Tumour development in Arabidopsis thaliana involves the Shaker-like K+ channels AKT1 and AKT2/3[J]. Plant J, 2003. 34(6):778-787.
[59] Philippar K, Buchsenschutz K, Abshagen M, Fuchs I, Geiger D, et al. The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays[J]. J Biol Chem, 2003. 278(19):16973-16981.
[60] Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K. Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta[J]. Plant J, 2006. 48(2):296-306.
[61] Becker D, Geiger D, Dunkel M, Roller A, Bertl A, et al. AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH-and Ca2+-dependent manner[J]. Proc Natl Acad Sci U S A, 2004. 101(44):15621-15626.
[62] Rocchetti A, Sharma T, Wulfetange C, Scholz-Starke J, Grippa A, et al. The putative K+ channel subunit AtKCO3 forms stable dimers in Arabidopsis[J]. Front Plant Sci, 2012. 3:251.
[63] Fu H H and Luan S. AtKuP1:a dual-affinity K+ transporter from Arabidopsis[J]. Plant Cell, 1998. 10(1):63-73.
[64] Kim EJ, Kwak JM, Uozumi N, Schroeder JI. AtKUP1:an Arabidopsis gene encoding high-affinity potassium transport activity[J]. Plant Cell, 1998. 10(1):51-62.
[65] Elumalai RP, Nagpal P, Reed JW, A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion[J]. Plant Cell, 2002. 14(1):119-131.
[66] Rigas S, Debrosses G, Haralampidis K, et al. TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs[J]. Plant Cell, 2001. 13(1):139-151.
[67] Vicente-Agullo F, Rigas S, Desbrosses G, Vicente-Agullo F, Feldmann KA, et al. Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots[J]. Plant J, 2004. 40(4):523-535.
[68] Han M, Wu W, Wu WH, Wang Y. Potassium Transporter KUP7 Is Involved in K+ Acquisition and Translocation in Arabidopsis Root under K+-Limited Conditions[J]. Mol Plant, 2016. 9(3):437-446.
[69] Zhang ML, Huang PP, Ji Y, Wang S, Wang SS, et al. KUP9 maintains root meristem activity by regulating K+ and auxin homeostasis in response to low K[J]. EMBO Rep, 2020. 21(6):e50164.
[70] Gierth M, Maser P. Potassium transporters in plants-Involvement in K+ acquisition, redistribution and homeostasis[J]. FEBS Lett, 2007. 581(12):2348-2356.
[71] Qi Z, Hampton C R, Shin, R, Barkla BJ, White PJ, et al. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis[J]. J Exp Bot, 2008. 59(3):595-607.
[72] Sunarpi, Horie T, Motoda J, Kubo M, Yang H, et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells[J]. Plant J, 2005. 44(6):928-938.
[73] Apse MP, Sottosanto JB and Blumwald E, Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter[J]. Plant J, 2003. 36(2):229-239.
[74] Barragan V, Leidi E O. Andres Z, Rubio L, De Luca A, et al. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis[J]. Plant Cell, 2012. 24(3):1127-1142.
[75] Bassil E, Tajima H, Liang YC, Ohto MA, Ushijima K, et al. The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction[J]. Plant Cell, 2011. 23(9):3482-3497.
[76] Venema K, Quintero FJ, Pardo JM, Donaire JP. The arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+and K+ transport in reconstituted liposomes[J]. J Biol Chem, 2002. 277(4):2413-2418.
[77] Zhao J, Cheng N, Motes CM, Blancaflor EB, Moore M, et al. AtCHX13 Is a Plasma Membrane K+ Transporter[J]. Plant Physiol, 2008. 148(2):796-807.
[78] Zhao J, Li P, Motes M, Park S, Hirschi KD. CHX14 is a plasma membrane K-efflux transporter that regulates K+ redistribution in Arabidopsis thaliana[J]. Plant, Cell&Environment, 2015. 38(11):2223-2238.
[79] Cellier F, Conéjéro G, Ricaud L, Luu DT, Lepetit M, et al. Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis[J]. Plant J, 2004. 39(6):834-846.
[80] Padmanaban S, Chanroj S, Kwak JM, Li X, Ward JM, et al. Participation of endomembrane cation/H+ exchanger AtCHX20 in osmoregulation of guard cells[J]. Plant Physiol, 2007. 144(1):82-93.
[81] Lu Y, Chanroj S, Zulkifli L, Johnson MA, Uozumi N, et al. Pollen tubes lacking a pair of K+ transporters fail to target ovules in Arabidopsis[J]. Plant Cell, 2011. 23(1):81-93.
[82] Song CP, Guo Y, Qiu Q, Lambert G, Galbraith DW, et al. A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana[J]. Proc Natl Acad Sci U S A, 2004. 101(27):10211-10216.
[83] Zhu X, Pan T, Zhang X, Fan L, Quintero FJ, et al. K+ Efflux Antiporters 4, 5, and 6 Mediate pH and K+ Homeostasis in Endomembrane Compartments[J]. Plant Physiol, 2018. 178(4):1657-1678.
计量
- 文章访问数: 89
- HTML全文浏览量: 0
- PDF下载量: 159