高级检索+

泛青藏高原高寒植物多样性的形成与演化

丁文娜, 星耀武

丁文娜,星耀武. 泛青藏高原高寒植物多样性的形成与演化[J]. 植物科学学报,2023,41(6):729−740. DOI: 10.11913/PSJ.2095-0837.23201
引用本文: 丁文娜,星耀武. 泛青藏高原高寒植物多样性的形成与演化[J]. 植物科学学报,2023,41(6):729−740. DOI: 10.11913/PSJ.2095-0837.23201
Ding WN,Xing YW. Evolutionary history of alpine plant diversity in the Pan-Tibetan Highlands[J]. Plant Science Journal,2023,41(6):729−740. DOI: 10.11913/PSJ.2095-0837.23201
Citation: Ding WN,Xing YW. Evolutionary history of alpine plant diversity in the Pan-Tibetan Highlands[J]. Plant Science Journal,2023,41(6):729−740. DOI: 10.11913/PSJ.2095-0837.23201
丁文娜,星耀武. 泛青藏高原高寒植物多样性的形成与演化[J]. 植物科学学报,2023,41(6):729−740. CSTR: 32231.14.PSJ.2095-0837.23201
引用本文: 丁文娜,星耀武. 泛青藏高原高寒植物多样性的形成与演化[J]. 植物科学学报,2023,41(6):729−740. CSTR: 32231.14.PSJ.2095-0837.23201
Ding WN,Xing YW. Evolutionary history of alpine plant diversity in the Pan-Tibetan Highlands[J]. Plant Science Journal,2023,41(6):729−740. CSTR: 32231.14.PSJ.2095-0837.23201
Citation: Ding WN,Xing YW. Evolutionary history of alpine plant diversity in the Pan-Tibetan Highlands[J]. Plant Science Journal,2023,41(6):729−740. CSTR: 32231.14.PSJ.2095-0837.23201

泛青藏高原高寒植物多样性的形成与演化

基金项目: 国家自然科学基金项目(32170212,32225005,U1802242); 博士后国际交流项目(PC2021084);青年人才托举工程(YESS2021QNRC001)。
详细信息
    作者简介:

    丁文娜(1991−),女,博士后,研究方向为山地生物多样性的形成及演变(E-mail:dingwenna@xtbg.ac.cn

    通讯作者:

    星耀武: E-mail:ywxing@xtbg.org.cn

  • 中图分类号: Q948.2

Evolutionary history of alpine plant diversity in the Pan-Tibetan Highlands

Funds: This work was supported by grants from the National Natural Science Foundation of China (32170212, 32225005, U1802242), Postdoctoral International Exchange Program (PC2021084), and Young Elite Scientists Sponsorship Program by CAST (YESS2021QNRC001).
  • 摘要:

    泛青藏高原地区拥有全球最丰富的高寒植物多样性,是生物多样性热点地区中的热点,也是研究地球环境演化与生物多样性演变过程的理想地区。该地区已经开展了大量谱系地理、生物地理学和进化生态学研究,对我们认识该地区的生物多样性演化及其维持机制具有重要意义。随着对青藏高原各地块构造演化历史研究的加深,该地区的生物多样性研究已经逐步迈入到地质-气候-生物过程的交叉研究。本文分析了青藏高原及其周边地区地质构造演化的最新研究进展,区分了青藏高原腹地、喜马拉雅和横断山,然后从青藏-喜马拉雅-横断山地区高寒植物多样性的起源及演化节奏、高寒植物的成分来源和区系交流以及高寒植物多样化的驱动因素等3方面总结了该地区高寒植物多样性的演化历史。最后,我们进一步提出在洲际或全球尺度上探讨不同地区高寒植物多样性演化历史的异同和联系,以及对高寒植物适应性进化策略的研究,以期深入理解高寒植物多样性分布格局的成因及其维持机制。

    Abstract:

    The Pan-Tibetan Highlands are a temperate biodiversity hotspot, hosting the world’s most species-rich alpine flora. Extensive phylogeographic, biogeographic, and evolutionary studies have deepened our understanding of the evolution and underlying mechanisms of biodiversity in this region. Furthermore, recent advancements in our understanding of the geological history of this region have paved the way for interdisciplinary studies integrating geological, climatic, and biological processes to elucidate regional biodiversity. In this context, we incorporate the latest geological insights into the Pan-Tibetan Highlands, distinguishing the Tibetan Plateau, the Himalaya, and the Hengduan Mountains. We review the origin and evolutionary history of alpine plant diversity in the Tibetan-Himalayan-Hengduan region, as well as the underlying abiotic and biotic drivers that may influence diversification and reproductive isolation. Finally, we propose further exploration of the evolutionary histories and biotic interchanges between different mountain ranges at intercontinental or global scales, as well as investigations into the genetic mechanisms underlying adaptive strategies in alpine plants.

  • 图  1   高寒生物区分布图

    A:高寒生物区在全球的分布(平均海拔3 000 m左右),苔原用蓝色表示。全球SRTM 500 m DEM数据和60ºN以上的高程数据来自30弧秒分辨率全球多分辨率地形高程数据2010(GMTED2010);苔原依据WWF的划分标准。B:从赤道到两极主要山脉的高寒生物区海拔高度变化示意图(修改自Körner [3])。

    Figure  1.   Distribution map of world alpine biome

    A: Alpine regions are shown in color, tundra regions are shown in blue and non-alpine regions are shown in different degrees of gray. SRTM 500 m and latitude above 60°N are derived from the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) at 30 arc-second resolution. Tundra is depicted based on WWF global biome classification. B: Schematic of altitudinal position of alpine life zone from Arctic to Antarctic latitudes (modified from Körner[3]).

    图  2   泛青藏高原相关地质构造及生物地理单元的划分—青藏高原腹地、喜马拉雅和横断山

    Figure  2.   Geological units related to orogeny of Pan-Tibetan Highlands, divided into Tibetan Plateau, Himalaya, and Hengduan Mountains

    图  3   横断山主要山峰东西坡垂直植被带比较(修改自Yao 等 [44]

    Figure  3.   Comparison of altitudinal belts between east (E) and west slopes (W) of the Hengduan Mountains (modified from Yao et al.[44])

    图  4   横断山、喜马拉雅和青藏高原腹地高寒地区生物多样性演化速率与气候变化和地质历史之间的关系(修改自Ding 等[27]

    A:全球气候变化曲线来自深海氧同位素记录[64, 65]。蓝色线段表示亚洲季风演化趋势,由Farnsworth 等[66] 在理想CO2下模拟的青藏高原及其周边地区各地史阶段的年平均降水量表示。B:喜马拉雅(HIM)、青藏高原腹地(TP)和横断山(HDM)从晚始新世至今分3个阶段的地形示意图。红色带数字的圆点表示基于最新构造证据重建古高程的地点。C:横断山、喜马拉雅和青藏高原腹地高寒生物区植物多样性速率随时间的变化。青藏高原主体图中由浅至深的黄色条带代表了古近纪以来青藏高原腹地的干旱化程度。

    Figure  4.   Rates of biotic assembly in relation to climate and geological history in the Hengduan Mountains, Himalaya, ibetan Plateau (modified from Ding et al.[27])

    A: Evolution of global climate is represented by deep-sea oxygen-isotope records[65] and estimated deep ocean temperatures by Hansen et al. [64]. Monsoon conditions are indicated by modeled mean annual precipitation (m) for each geological stage, represented by blue lines at idealized CO2 (solid blue circle) (modified from Farnsworth et al. [66]). B: Schematic of topography of the Himalaya (HIM), the Tibetan Plateau (TP), and the Hengduan Mountains (HDM) in three phases, from late Eocene to the present. C: Rolling estimates of rates through time in the HDM, HIM, and TP. Light to dark yellow bar in the last panel represents intensity of aridification in the TP since the Paleogene.

  • [1]

    Rahbek C,Borregaard MK,Colwell RK,Dalsgaard B,Holt BG,et al. Humboldt’s enigma:what causes global patterns of mountain biodiversity?[J]. Science,2019,365 (6458):1108−1113. doi: 10.1126/science.aax0149

    [2]

    Rahbek C,Borregaard MK,Antonelli A,Colwell RK,Holt BG,et al. Building mountain biodiversity:geological and evolutionary processes[J]. Science,2019,365 (6458):1114−1119. doi: 10.1126/science.aax0151

    [3]

    Körner C. The alpine life zone[M]//Körner C, ed. Alpine Plant Life. 3rd ed. Cham: Springer, 2021: 23-51.

    [4]

    Lamprecht A,Semenchuk PR,Steinbauer K,Winkler M,Pauli H. Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps[J]. New Phytol,2018,220 (2):447−459. doi: 10.1111/nph.15290

    [5]

    Rumpf SB,Hülber K,Klonner G,Moser D,Schütz M,et al. Range dynamics of mountain plants decrease with elevation[J]. Proc Natl Acad Sci USA,2018,115 (8):1848−1853. doi: 10.1073/pnas.1713936115

    [6]

    Madriñán S,Cortés AJ,Richardson JE. Páramo is the world's fastest evolving and coolest biodiversity hotspot[J]. Front Genet,2013,4:192.

    [7]

    Heenan PB,Mcglone MS. Evolution of New Zealand alpine and open-habitat plant species during the late Cenozoic[J]. NZJ Ecol,2013,37 (1):105−113.

    [8]

    Winkworth RC,Wagstaff SJ,Glenny D,Lockhart PJ. Evolution of the New Zealand mountain flora:origins,diversification and dispersal[J]. Org Divers Evol,2005,5 (3):237−247. doi: 10.1016/j.ode.2004.12.001

    [9]

    Kandziora M,Gehrke B,Popp M,Gizaw A,Brochmann C,Pirie MD. The enigmatic tropical alpine flora on the African sky islands is young,disturbed,and unsaturated[J]. Proc Natl Acad Sci USA,2022,119 (22):e2112737119. doi: 10.1073/pnas.2112737119

    [10] 邓涛,吴飞翔,苏涛,周浙昆. 青藏高原——现代生物多样性形成的演化枢纽[J]. 中国科学:地球科学,2020,63(2):172−187. doi: 10.1007/s11430-019-9507-5

    Deng T,Wu FX,Su T,Zhou ZK. Tibetan Plateau:an evolutionary junction for the history of modern biodiversity[J]. Science China Earth Sciences,2020,63 (2):172−187. doi: 10.1007/s11430-019-9507-5

    [11] 周浙昆,邓涛. 青藏高原是研究生物演化和环境演变的天然实验室[J]. 中国科学:地球科学,2020,63(2):169−171. doi: 10.1007/s11430-019-9563-x

    Zhou ZK,Deng T. The Tibetan Plateau is a natural laboratory for studying organic evolution and environmental change[J]. Science China Earth Sciences,2020,63 (2):169−171. doi: 10.1007/s11430-019-9563-x

    [12]

    Jacques FMB,Guo SX,Su T,Xing YW,Huang YJ,et al. Quantitative reconstruction of the Late Miocene monsoon climates of southwest China:a case study of the Lincang flora from Yunnan Province[J]. Palaeogeogr Palaeoclimatol Palaeoecol,2011,304 (3-4):318−327. doi: 10.1016/j.palaeo.2010.04.014

    [13]

    Xing YW,Utescher T,Jacques FMB,Su T,Liu YS,et al. Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the late Miocene:evidence from plant macrofossils[J]. Palaeogeogr Palaeoclimatol Palaeoecol,2012,358-360:19−26. doi: 10.1016/j.palaeo.2012.07.011

    [14]

    Su T,Liu YS,Jacques FMB,Huang YJ,Xing YW,et al. The intensification of the East Asian winter monsoon contributed to the disappearance of Cedrus (Pinaceae) in southwestern China[J]. Quatern Res,2013,80 (2):316−325. doi: 10.1016/j.yqres.2013.07.001

    [15]

    Boschman LM,Condamine FL. Mountain radiations are not only rapid and recent:ancient diversification of South American frog and lizard families related to Paleogene Andean orogeny and Cenozoic climate variations[J]. Glob Planet Change,2022,208:103704. doi: 10.1016/j.gloplacha.2021.103704

    [16]

    Olson DM,Dinerstein E,Wikramanayake ED,Burgess ND,Powell GVN,et al. Terrestrial ecoregions of the world:a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity[J]. BioScience,2001,51 (11):933−938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

    [17] 刘晓惠,许强,丁林. 差异抬升:青藏高原新生代古高度变化历史[J]. 中国科学:地球科学,2016,59(11):2105−2120. doi: 10.1007/s11430-015-5486-y

    Liu XH,Xu Q,Ding L. Differential surface uplift:cenozoic paleoelevation history of the Tibetan Plateau[J]. Science China Earth Sciences,2016,59 (11):2105−2120. doi: 10.1007/s11430-015-5486-y

    [18]

    Spicer RA,Su T,Valdes PJ,Farnsworth A,Wu FX,et al. Why the‘uplift of the Tibetan Plateau’ is a myth?[J]. Natl Sci Rev,2020,8 (1):nwaa091.

    [19] 丁林,李震宇,宋培平. 青藏高原的核心来自南半球冈瓦纳大陆[J]. 中国科学院院刊,2017,32(9):945−950. doi: 10.16418/j.issn.1000-3045.2017.09.003

    Ding L,Li ZY,Song PP. Core fragments of tibetan plateau from gondwanaland united in northern hemisphere[J]. Bulletin of Chinese Academy of Sciences,2017,32 (9):945−950. doi: 10.16418/j.issn.1000-3045.2017.09.003

    [20]

    Ding L,Xu Q,Yue YH,Wang HQ,Cai FL,Li S. The andean-type gangdese mountains:paleoelevation record from the paleocene-eocene Linzhou Basin[J]. Earth Planet Sci Lett,2014,392:250−264. doi: 10.1016/j.jpgl.2014.01.045

    [21] 丁林,Maksatbek S,蔡福龙,王厚起,宋培平,等. 印度与欧亚大陆初始碰撞时限、封闭方式和过程[J]. 中国科学:地球科学,2017,60(4):635−651. doi: 10.1007/s11430-016-5244-x

    Ding L,Maksatbek S,Cai FL,Wang HQ,Song PP,et al. Processes of initial collision and suturing between India and Asia[J]. Science China Earth Sciences,2017,60 (4):635−651. doi: 10.1007/s11430-016-5244-x

    [22]

    Fang XM,Dupont-Nivet G,Wang CS,Song CH,Meng QQ,et al. Revised chronology of central Tibet uplift (Lunpola Basin)[J]. Sci Adv,2020,6 (50):eaba7298. doi: 10.1126/sciadv.aba7298

    [23]

    Ding L,Spicer RA,Yang J,Xu Q,Cai FL,et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology,2017,45 (3):215−218. doi: 10.1130/G38583.1

    [24]

    Favre A,Päckert M,Pauls SU,Jähnig SC,Uhl D,et al. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas[J]. Biol Rev,2015,90 (1):236−253. doi: 10.1111/brv.12107

    [25]

    Su T,Spicer RA,Li SH,Xu H,Huang J,et al. Uplift,climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet[J]. Natl Sci Rev,2019,6 (3):495−504. doi: 10.1093/nsr/nwy062

    [26]

    Liu J,Milne RI,Zhu GF,Spicer RA,Wambulwa MC,et al. Name and scale matter:clarifying the geography of Tibetan Plateau and adjacent mountain regions[J]. Glob Planet Change,2022,215:103893. doi: 10.1016/j.gloplacha.2022.103893

    [27]

    Ding WN,Ree RH,Spicer RA,Xing YW. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora[J]. Science,2020,369 (6503):578−581. doi: 10.1126/science.abb4484

    [28] 王成善,戴紧根,刘志飞,朱利东,李亚林,贾国东. 西藏高原与喜马拉雅的隆升历史和研究方法:回顾与进展[J]. 地学前缘,2009,16(3):1−30. doi: 10.3321/j.issn:1005-2321.2009.03.001

    Wang CS,Dai JG,Liu ZF,Zhu LD,Li YL,Jia GD. The uplift history of the Tibetan Plateau and Himalaya and its study approaches and techniques:a review[J]. Earth Science Frontiers,2009,16 (3):1−30. doi: 10.3321/j.issn:1005-2321.2009.03.001

    [29] 孙继敏,刘卫国,柳中晖,付碧宏. 青藏高原隆升与新特提斯海退却对亚洲中纬度阶段性气候干旱的影响[J]. 中国科学院院刊,2017,32(9):951−958. doi: 10.16418/j.issn.1000-3045.2017.09.004

    Sun JM,Liu WG,Liu ZH,Fu BH. Effects of the uplift of the Tibetan Plateau and retreat of neotethys ocean on the stepwise aridification of Mid-Latitude Asian interior[J]. Bulletin of Chinese Academy of Sciences,2017,32 (9):951−958. doi: 10.16418/j.issn.1000-3045.2017.09.004

    [30] 武素功,杨永平,费勇. 青藏高原高寒地区种子植物区系的研究[J]. 云南植物研究,1995,17(3):233−250.

    Wu SG,Yang YP,Fei Y. On the flora of the alpine region in the Qinghai-Xizang (Tibet) Plateau[J]. Acta Botanica Yunnanica,1995,17 (3):233−250.

    [31] 邓敏,周浙昆. 滇西北高山流石滩植物多样性[J]. 云南植物研究,2004,26(1):23−34.

    Deng M,Zhou ZK. Seed plant diversity on screes from Northwest Yunnan[J]. Acta Botanica Yunnanica,2004,26 (1):23−34.

    [32] 李炳元. 横断山脉范围探讨[J]. 山地研究,1987,5(2):74−82.

    Li BY. On the boundaries of the Hengduan Mountains[J]. Mountain Research,1987,5 (2):74−82.

    [33] 钟祥浩,张文敬,罗辑. 贡嘎山地区山地生态系统与环境特征[J]. AMBIO-人类环境杂志,1999,28(8):648−654.

    Zhong XH,Zhang WJ,Luo J. The characteristics of the mountain ecosystem and environment in the Gongga mountain region[J]. AMBIO-A Journal of the Hunman Environment,1999,28 (8):648−654.

    [34]

    Boufford DE. Biodiversity hotspot:China's Hengduan Mountains[J]. Arnoldia,2014,72 (1):24−35.

    [35] 中国科学院青藏高原综合科学考察队. 横断山区土壤[M]. 北京: 气象出版社, 2000: 1-11.
    [36] 李文华, 张谊光. 横断山区的垂直气候及其对森林分布的影响[M]. 北京: 气象出版社, 2010: 1-17.
    [37] 李恒,武素功. 西藏植物区系区划和喜马拉雅南部植物地区的区系特征[J]. 地理学报,1983,38(3):252−261. doi: 10.3321/j.issn:0375-5444.1983.03.005

    Li H,Wu SG. The regionalization of Xizang (Tibet) flora and the floristic structure of south Himalaya region[J]. Acta Geographica Sinica,1983,38 (3):252−261. doi: 10.3321/j.issn:0375-5444.1983.03.005

    [38]

    Tiwari A,Uprety Y,Rana SK. Plant endemism in the Nepal Himalayas and phytogeographical implications[J]. Plant Divers,2019,41 (3):174−182. doi: 10.1016/j.pld.2019.04.004

    [39] 张大才,孙航. 横断山区树线以上区域种子植物的标本分布与物种丰富度[J]. 生物多样性,2008,16(4):381−388. doi: 10.3321/j.issn:1005-0094.2008.04.009

    Zhang DC,Sun H. Distribution of specimens and species richness of seed plants above timber line in the Hengduan Mountains,southwest China[J]. Biodiversity Science,2008,16 (4):381−388. doi: 10.3321/j.issn:1005-0094.2008.04.009

    [40]

    Li XH,Zhu XX,Niu Y,Sun H. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region,southwest China[J]. J Syst Evol,2014,52 (3):280−288. doi: 10.1111/jse.12027

    [41]

    Yu HB,Miao SY,Xie GW,Guo XY,Chen Z,Favre A. Contrasting floristic diversity of the Hengduan Mountains,the Himalayas and the Qinghai-Tibet Plateau sensu stricto in China[J]. Front Ecol Evol,2020,8:136. doi: 10.3389/fevo.2020.00136

    [42]

    Ohba H. The alpine flora of the Nepal Himalayas: an introductory note[M]//Ohba H, Malla SH, eds. The Himalayan Plants. Tokyo: Tokyo University Press, 1988: 19-46.

    [43]

    Stainton A, Polunin O. Flowers of the Himalaya[M]. Oxford: Oxford University Press, 1988: 1-100.

    [44]

    Flantua SGA,O'dea A,Onstein RE,Giraldo C,Hooghiemstra H. Diversity and geographical pattern of altitudinal belts in the Hengduan Mountains in China[J]. J Mt Sci,2010,7 (2):123−132. doi: 10.1007/s11629-010-1011-9

    [45]

    Flantua SGA,O'dea A,Onstein RE,Giraldo C,Hooghiemstra H. The flickering connectivity system of the north Andean páramos[J]. J Biogeogr,2019,46 (8):1808−1825. doi: 10.1111/jbi.13607

    [46]

    Gehrke B,Linder HP. Species richness,endemism and species composition in the tropical Afroalpine flora[J]. Alp Bot,2014,124 (2):165−177. doi: 10.1007/s00035-014-0132-0

    [47]

    Luo D,Yue JP,Sun WG,Xu B,Li ZM,et al. Evolutionary history of the subnival flora of the Himalaya-Hengduan Mountains:first insights from comparative phylogeography of four perennial herbs[J]. J Biogeogr,2016,43 (1):31−43. doi: 10.1111/jbi.12610

    [48]

    Liu JQ,Gao TG,Chen ZD,Lu AM. Molecular phylogeny and biogeography of the Qinghai-Tibet Plateau endemic Nannoglottis (Asteraceae)[J]. Mol Phylogenet Evol,2002,23 (3):307−325. doi: 10.1016/S1055-7903(02)00039-8

    [49]

    Wang YJ,Liu JQ,Miehe G. Phylogenetic origins of the himalayan endemic Dolomiaea,Diplazoptilon and Xanthopappus (Asteraceae:Cardueae) based on three DNA regions[J]. Ann Bot,2007,99 (2):311−322. doi: 10.1093/aob/mcl259

    [50]

    Zhang JW,Nie ZL,Wen J,Sun H. Molecular phylogeny and biogeography of three closely related genera,Soroseris,Stebbinsia,and Syncalathium (Asteraceae,Cichorieae),endemic to the Tibetan Plateau,SW China[J]. Taxon,2011,60 (1):15−26. doi: 10.1002/tax.601003

    [51]

    Xu B,Luo D,Li ZM,Sun H. Evolutionary radiations of cushion plants on the Qinghai-Tibet Plateau:insights from molecular phylogenetic analysis of two subgenera of Arenaria and Thylacospermum (Caryophyllaceae)[J]. Taxon,2019,68 (5):1003−1020. doi: 10.1002/tax.12127

    [52]

    Ye XY,Ma PF,Yang GQ,Guo C,Zhang YX,et al. Rapid diversification of alpine bamboos associated with the uplift of the Hengduan Mountains[J]. J Biogeogr,2019,46 (12):2678−2689. doi: 10.1111/jbi.13723

    [53]

    Liu JQ,Wang YJ,Wang AL,Hideaki O,Abbott RJ. Radiation and diversification within the Ligularia-Cremanthodium-Parasenecio complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau[J]. Mol Phylogenet Evol,2006,38 (1):31−49. doi: 10.1016/j.ympev.2005.09.010

    [54]

    Xu LS,Herrando-Moraira S,Susanna A,Galbany-Casals M,Chen YS. Phylogeny,origin and dispersal of Saussurea (Asteraceae) based on chloroplast genome data[J]. Mol Phylogenet Evol,2019,141:106613. doi: 10.1016/j.ympev.2019.106613

    [55]

    Zhang ML,Fritsch PW. Evolutionary response of Caragana (Fabaceae) to Qinghai-Tibetan Plateau uplift and Asian interior aridification[J]. Plant Syst Evol,2010,288 (3-4):191−199. doi: 10.1007/s00606-010-0324-z

    [56]

    Xie HY,Ash JE,Linde CC,Cunningham S,Nicotra A. Himalayan-Tibetan plateau uplift drives divergence of polyploid poppies:Meconopsis viguier (Papaveraceae)[J]. PLoS One,2014,9 (6):e99177. doi: 10.1371/journal.pone.0099177

    [57]

    Sun YS,Wang AL,Wan DS,Wang Q,Liu JQ. Rapid radiation of Rheum (Polygonaceae) and parallel evolution of morphological traits[J]. Mol Phylogenet Evol,2012,63 (1):150−158. doi: 10.1016/j.ympev.2012.01.002

    [58]

    Zhang JQ,Meng SY,Allen GA,Wen J,Rao GY. Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage Rhodiola (Crassulaceae)[J]. Mol Phylogenet Evol,2014,77:147−158. doi: 10.1016/j.ympev.2014.04.013

    [59]

    Ebersbach J,Muellner-Riehl AN,Michalak I,Tkach N,Hoffmann MH,et al. In and out of the Qinghai-Tibet Plateau:divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L.[J]. J Biogeogr,2017,44 (4):900−910. doi: 10.1111/jbi.12899

    [60]

    Favre A,Michalak I,Chen CH,Wang JC,Pringle JS,et al. Out-of-Tibet:the spatio-temporal evolution of Gentiana (Gentianaceae)[J]. J Biogeogr,2016,43 (10):1967−1978. doi: 10.1111/jbi.12840

    [61]

    Zhao JL,Xia YM,Cannon CH,Kress WJ,Li QJ. Evolutionary diversification of alpine ginger reflects the early uplift of the Himalayan-Tibetan Plateau and rapid extrusion of Indochina[J]. Gondwana Res,2016,32:232−241. doi: 10.1016/j.gr.2015.02.004

    [62] 李锡文,李捷. 横断山脉地区种子植物区系的初步研究[J]. 云南植物研究,1993,15(3):217−231.

    Li XW,Li J. A preliminary floristic study on the seed plants from the region of Hengduan Mountain[J]. Acta Botanica Yunnanica,1993,15 (3):217−231.

    [63]

    Hörandl E,Emadzade K. The evolution and biogeography of alpine species in Ranunculus (Ranunculaceae):a global comparison[J]. Taxon,2011,60 (2):415−426. doi: 10.1002/tax.602011

    [64]

    Hansen J,Sato M,Russell G,Kharecha P. Climate sensitivity,sea level and atmospheric carbon dioxide[J]. Philos Trans Roy Soc A Math Phys Eng Sci,2013,371 (2001):20120294.

    [65]

    Zachos JC,Dickens GR,Zeebe RE. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature,2008,451 (7176):279−283. doi: 10.1038/nature06588

    [66]

    Farnsworth A,Lunt DJ,Robinson SA,Valdes PJ,Roberts WHG,et al. Past East Asian monsoon evolution controlled by paleogeography,not CO2[J]. Sci Adv,2019,5 (10):eaax1697. doi: 10.1126/sciadv.aax1697

    [67]

    Hazzi NA,Moreno JS,Ortiz-Movliav C,Palacio RD. Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes[J]. Proc Natl Acad Sci USA,2018,115 (31):7985−7990. doi: 10.1073/pnas.1803908115

    [68]

    Assefa A,Ehrich D,Taberlet P,Nemomissa S,Brochmann C. Pleistocene colonization of afro-alpine ‘sky islands’ by the arctic-alpine Arabis alpina[J]. Heredity,2007,99 (2):133−142. doi: 10.1038/sj.hdy.6800974

    [69]

    Muellner-Riehl AN. Mountains as evolutionary arenas:patterns,emerging approaches,paradigm shifts,and their implications for plant phylogeographic research in the Tibeto-Himalayan region[J]. Front Plant Sci,2019,10:195. doi: 10.3389/fpls.2019.00195

    [70]

    Sun H,Li ZM,Landis JB,Qian LS,Zhang TC,Deng T. Effects of drainage reorganization on phytogeographic pattern in Sino-Himalaya[J]. Alp Bot,2022,132 (1):141−151. doi: 10.1007/s00035-021-00269-4

    [71]

    Chen JH,Huang Y,Brachi B,Yun QZ,Zhang W,et al. Genome-wide analysis of Cushion willow provides insights into alpine plant divergence in a biodiversity hotspot[J]. Nat Commun,2019,10 (1):5230. doi: 10.1038/s41467-019-13128-y

    [72]

    Liu JQ,Duan YW,Hao G,Ge XJ,Sun H. Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibet Plateau[J]. J Syst Evol,2014,52 (3):241−249. doi: 10.1111/jse.12094

    [73]

    Wu SD,Wang Y,Wang ZF,Shrestha N,Liu JQ. Species divergence with gene flow and hybrid speciation on the Qinghai-Tibet Plateau[J]. New Phytol,2022,234 (2):392−404. doi: 10.1111/nph.17956

    [74]

    Ma YZ,Mao XX,Wang J,Zhang L,Jiang YZ,et al. Pervasive hybridization during evolutionary radiation of Rhododendron subgenus Hymenanthes in mountains of southwest China[J]. Natl Sci Rev,2022,9 (12):nwac276. doi: 10.1093/nsr/nwac276

    [75]

    Fu PC,Twyford AD,Sun SS,Wang HY,Xia MZ,et al. Recurrent hybridization underlies the evolution of novelty in Gentiana (Gentianaceae) in the Qinghai-Tibetan Plateau[J]. AoB Plants,2021,13 (1):plaa068. doi: 10.1093/aobpla/plaa068

    [76]

    Han TS,Hu ZY,Du ZQ,Zheng QJ,Liu J,et al. Adaptive responses drive the success of polyploid yellowcresses (Rorippa,Brassicaceae) in the Hengduan Mountains,a temperate biodiversity hotspot[J]. Plant Divers,2022,44 (5):455−467. doi: 10.1016/j.pld.2022.02.002

    [77]

    Xu B,Li ZM,Sun H. Plant diversity and floristic characters of the alpine subnival belt flora in the Hengduan Mountains,SW China[J]. J Syst Evol,2014,52 (3):271−279. doi: 10.1111/jse.12037

图(4)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  159
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-18
  • 修回日期:  2023-08-28
  • 刊出日期:  2024-01-04

目录

    /

    返回文章
    返回