高级检索+

外生菌根真菌对不同氮浓度下马尾松幼苗生长和光合特性的影响

孙鹏飞, 沈雅飞, 王丽君, 陈天, 张萌, 肖文发, 程瑞梅

孙鹏飞,沈雅飞,王丽君,陈天,张萌,肖文发,程瑞梅. 外生菌根真菌对不同氮浓度下马尾松幼苗生长和光合特性的影响[J]. 植物科学学报,2023,41(1):112−120. DOI: 10.11913/PSJ.2095-0837.22113
引用本文: 孙鹏飞,沈雅飞,王丽君,陈天,张萌,肖文发,程瑞梅. 外生菌根真菌对不同氮浓度下马尾松幼苗生长和光合特性的影响[J]. 植物科学学报,2023,41(1):112−120. DOI: 10.11913/PSJ.2095-0837.22113
Sun PF,Shen YF,Wang LJ,Chen T,Zhang M,Xiao WF,Cheng RM. Effects of nitrogen addition and ectomycorrhizal fungi on growth and photosynthetic characteristics of Pinus massoniana Lamb. seedlings[J]. Plant Science Journal,2023,41(1):112−120. DOI: 10.11913/PSJ.2095-0837.22113
Citation: Sun PF,Shen YF,Wang LJ,Chen T,Zhang M,Xiao WF,Cheng RM. Effects of nitrogen addition and ectomycorrhizal fungi on growth and photosynthetic characteristics of Pinus massoniana Lamb. seedlings[J]. Plant Science Journal,2023,41(1):112−120. DOI: 10.11913/PSJ.2095-0837.22113
孙鹏飞,沈雅飞,王丽君,陈天,张萌,肖文发,程瑞梅. 外生菌根真菌对不同氮浓度下马尾松幼苗生长和光合特性的影响[J]. 植物科学学报,2023,41(1):112−120. CSTR: 32231.14.PSJ.2095-0837.22113
引用本文: 孙鹏飞,沈雅飞,王丽君,陈天,张萌,肖文发,程瑞梅. 外生菌根真菌对不同氮浓度下马尾松幼苗生长和光合特性的影响[J]. 植物科学学报,2023,41(1):112−120. CSTR: 32231.14.PSJ.2095-0837.22113
Sun PF,Shen YF,Wang LJ,Chen T,Zhang M,Xiao WF,Cheng RM. Effects of nitrogen addition and ectomycorrhizal fungi on growth and photosynthetic characteristics of Pinus massoniana Lamb. seedlings[J]. Plant Science Journal,2023,41(1):112−120. CSTR: 32231.14.PSJ.2095-0837.22113
Citation: Sun PF,Shen YF,Wang LJ,Chen T,Zhang M,Xiao WF,Cheng RM. Effects of nitrogen addition and ectomycorrhizal fungi on growth and photosynthetic characteristics of Pinus massoniana Lamb. seedlings[J]. Plant Science Journal,2023,41(1):112−120. CSTR: 32231.14.PSJ.2095-0837.22113

外生菌根真菌对不同氮浓度下马尾松幼苗生长和光合特性的影响

基金项目: 中国林业科学研究院重点基金(92104-2021)
详细信息
    作者简介:

    孙鹏飞(1992−),男,博士研究生,研究方向为森林生态学(E-mail:1075554411@qq.com

    通讯作者:

    程瑞梅: E-mail:chengrm@caf.ac.cn

  • 中图分类号: Q945

Effects of nitrogen addition and ectomycorrhizal fungi on growth and photosynthetic characteristics of Pinus massoniana Lamb. seedlings

Funds: This work was supported by a grant from the Key Fund of the Chinese Academy of Forestry Sciences (92104-2021)
  • 摘要:

    为探究马尾松(Pinus massoniana Lamb.)在日益加剧的氮沉降背景下接种外生菌根真菌(Ectomycorrhizal fungi,EMF)后的生理响应规律和适应机制,以1年生马尾松幼苗为对象,通过模拟氮沉降增加(氮添加量分别为0、30、60、90 kg N·hm−2·a−1)和接种外生菌根真菌的方法,研究施氮和接菌对马尾松幼苗生长和光合特性的影响。结果显示:(1)在同一施氮浓度下,两种EMF均能促进马尾松幼苗的生长和光合作用,接种处理对株高、生长量、叶绿素bPn、Gs、Ci、Tr影响极显著,两种EMF在不同的施氮浓度下促生效果不同;(2)在一定的氮沉降范围内,氮素增加仍可以促进马尾松幼苗的生长,其径粗、地上部和地下部干质量随施氮浓度的升高呈递增趋势;(3)二者交互处理下,马尾松幼苗生长和光合各项指标均有所提高,其中株高、生长量和叶绿素b显著增加,说明施氮和接菌均能促进马尾松的生长。研究结果表明,在一定程度的氮沉降下接种EMF可以促进马尾松的生长和光合作用,提高马尾松的生产力,在未来氮沉降增加的背景下,施氮量增加仍对菌根化马尾松有促生作用。

    Abstract:

    To explore the physiological responses and adaptation mechanisms of P. massoniana Lamb. inoculated with ectomycorrhizal fungi (EMF) under increasing nitrogen deposition, one-year-old P. massoniana seedlings were inoculated with EMF and stimulated by nitrogen deposition (0, 30, 60, 90 kg N·hm−2·a−1, respectively). The effects of nitrogen application and inoculation on the growth and photosynthetic characteristics of P. massoniana seedlings were then studied. Results showed that: (1) Under the same nitrogen concentration, both kinds of EMF promoted the growth and photosynthesis of P. massoniana seedlings, and inoculation had significant effects on plant height, growth, chlorophyll b, Pn, Gs, Ci, and Tr. The growth promoting effects of both EMF differed under different nitrogen concentrations. (2) Within a certain range of nitrogen deposition, increasing nitrogen promoted P. massoniana seedling growth. Diameter, aboveground dry weight, and underground dry weight increased with the increase in nitrogen concentration. (3) Under interactive treatment, the growth and photosynthetic indices of P. massoniana seedlings increased, among which plant height, growth, and chlorophyll b increased significantly, indicating that nitrogen application and EMF inoculation promoted P. massoniana growth. In general, EMF inoculation promoted the growth, photosynthesis, and productivity of P. massoniana under a certain range of nitrogen deposition. Under a background of increasing nitrogen deposition in the future, nitrogen application can promote the growth of mycorrhizal P. massoniana, providing a basis for the artificial afforestation of P. massoniana as a dominant tree species in the Three Gorges Reservoir area.

  • 图  1   不同氮浓度下接种EMF对马尾松幼苗气体交换参数的影响

    数值为均值 ± 标准差(n = 3)。相同字母表示两者之间在 P < 0.05 的水平下差异不显著(Duncan’s test),下同。

    Figure  1.   Effects of EMF inoculation on gas exchange parameters of Pinus massoniana seedlings under different N concentrations

    Values are means ± SD (n = 3). Means followed by the same letter are not significantly different at P < 0.05 by Duncan’s test, same below.

    图  2   不同氮浓度下接种EMF对马尾松幼苗水分利用效率和叶片相对含水量的影响

    Figure  2.   Effects of EMF inoculation on water use efficiency and relative water content of Pinus massoniana seedlings under different N concentrations

    表  1   施氮、接种处理及两者交互作用对马尾松幼苗各指标的影响

    Table  1   Effects of N treatment, EMF treatment, and N × EMF on Pinus massoniana seedling parameters

    指标
    Parameter
    接种处理
    EMF treatment
    施氮处理
    Nitrogen treatment
    接种处理 × 施氮处理
    EMF × Nitrogen treatment
    FPFPFP
    株高 49.71 0.00** 137.07 0.00** 10.27 0.00**
    径粗 3.61 0.04* 179.88 0.00** 1.59 0.19ns
    地上部干质量 2.61 0.08ns 8.05 0.00** 0.39 0.88ns
    地下部干质量 1.24 0.30ns 6.49 0.00** 0.30 0.93ns
    生长量 264.39 0.00** 162.86 0.00** 26.22 0.00**
    叶绿素a含量 1.37 0.27ns 7.65 0.00** 0.29 0.94ns
    叶绿素b含量 19.43 0.00** 28.38 0.00** 5.87 0.00**
    总叶绿素含量 3.06 0.07ns 10.89 0.00** 0.58 0.74ns
    类胡萝卜素含量 1.46 0.25ns 4.91 0.00** 0.37 0.89ns
    水分利用效率 3.23 0.06ns 7.90 0.00** 0.43 0.85ns
    相对含水量 0.37 0.69ns 0.35 0.79ns 0.06 1.00ns
    净光合速率 16.62 0.00** 46.55 0.00** 3.27 0.02*
    气孔导度 20.30 0.00** 10.92 0.00** 1.34 0.28ns
    胞间CO2浓度 14.53 0.00** 0.92 0.45ns 1.75 0.15ns
    蒸腾速率 18.26 0.00** 2.33 0.10ns 1.83 0.14ns
    注:*,P < 0.05;**,P < 0.01;ns,不显著。
    Note: ns, non-significant.
    下载: 导出CSV

    表  2   施氮与接种外生菌根真菌对马尾松幼苗生长的影响

    Table  2   Effects of N application and EMF inoculation on Pinus massoniana seedling growth

    接菌
    Inoculation
    氮浓度
    Nitrogen concentration /
    kg N·hm−2·a−1
    株高净增长量
    Net growth of
    plant height / cm
    茎粗净增长量
    Net growth of
    stem diameter / cm
    地上部干重
    Aboveground
    dry weight / g
    地下部干重
    Underground
    dry weight / g
    生长量
    Growth
    weight / g
    Sg010.83 ± 0.37d0.77 ± 0.02f11.93 ± 3.23bc2.87 ± 0.92bc75.56 ± 5.97de
    3011.36 ± 0.28c0.99 ± 0.04e18.58 ± 2.01ab4.72 ± 0.53abc85.08 ± 4.13d
    6012.09 ± 0.33ab1.23 ± 0.02b22.05 ± 4.08a5.91 ± 0.58ab120.68 ± 2.16b
    9012.02 ± 0.24ab1.12 ± 0.03cd19.00 ± 4.65ab4.74 ± 1.58abc101.36 ± 4.38c
    Pt010.51 ± 0.39d0.74 ± 0.05f10.50 ± 2.04bc2.73 ± 0.20c49.39 ± 2.81g
    3010.85 ± 0.17d0.96 ± 0.01e14.60 ± 2.14abc3.86 ± 0.37bc63.22 ± 4.03f
    6012.35 ± 0.23a1.34 ± 0.12a23.09 ± 3.28a6.99 ± 1.60a133.12 ± 1.46a
    9011.88 ± 0.14b1.17 ± 0.03bc15.64 ± 2.58abc4.57 ± 1.04abc130.61 ± 3.22ab
    CK08.92 ± 0.35e0.74 ± 0.03f7.73 ± 0.81c2.69 ± 0.55c22.92 ± 3.90h
    3010.73 ± 0.31d0.95 ± 0.03e11.66 ± 1.90bc3.03 ± 0.42bc42.38 ± 2.67g
    6011.79 ± 0.19b1.23 ± 0.03b17.35 ± 2.94ab5.25 ± 1.26abc68.28 ± 2.62ef
    9011.38 ± 0.37c1.08 ± 0.03d17.08 ± 2.50ab3.64 ± 0.70bc47.46 ± 2.59g
    注:同列不同小写字母代表差异显著(P < 0.05)。下同
    Note: Different letters in same column indicate significant difference at P < 0.05 level among treatments. Same below.
    下载: 导出CSV

    表  3   不同氮浓度下接种EMF对马尾松幼苗光合色素含量的影响

    Table  3   Effects of EMF inoculation on photosynthetic pigment content in Pinus massoniana seedlings under different N concentrations

    接菌
    Inoculation
    氮浓度
    N concentration /
    kg N·hm−2·a−1
    叶绿素a含量
    Chl a content / mg/g
    叶绿素b含量
    Chl b content / mg/g
    总叶绿素含量
    Chl t content / mg/g
    类胡萝卜素含量
    Carotenoid content / mg/g
    Sg00.323 ± 0.058cd0.104 ± 0.034c0426 ± 0.057cd0.103 ± 0.018abc
    300.355 ± 0.031bcd0.112 ± 0.070c0.467 ± 0.094cd0.105 ± 0.012abc
    600.548 ± 0.010ab0.157 ± 0.040b0.699 ± 0.014ab0.150 ± 0.001ab
    900.468 ± 0.064abcd0.152 ± 0.024b0.625 ± 0.101abc0.132 ± 0.020abc
    Pt00.312 ± 0.039cd0.099 ± 0.020c0.412 ± 0.059cd0.088 ± 0.001bc
    300.357 ± 0.062bcd0.097 ± 0.001c0.457 ± 0.065cd0.102 ± 0.021abc
    600.575 ± 0.065a0.221 ± 0.038a0.747 ± 0.076a0.167 ± 0.014a
    900.519 ± 0.080abc0.171 ± 0.012b0.740 ± 0.113ab0.142 ± 0.033abc
    CK00.275 ± 0.022d0.093 ± 0.017c0.367 ± 0.039d0.071 ± 0.017c
    300.327 ± 0.021cd0.094 ± 0.001c0.420 ± 0.029cd0.094 ± 0.003bc
    600.460 ± 0.106abcd0.118 ± 0.031c0.578 ± 0.137abcd0.130 ± 0.031abc
    900.417 ± 0.111abcd0.102 ± 0.045c0.518 ± 0.156bcd0.112 ± 0.036abc
    下载: 导出CSV
  • [1]

    Galloway JN,Townsend AR,Erisman JW,Bekunda M,Cai ZC,et al. Transformation of the nitrogen cycle:recent trends,questions,and potential solutions[J]. Science,2008,320 (5878):889−892. doi: 10.1126/science.1136674

    [2]

    Yu GR,Jia YL,He NP,Zhu JX,Chen Z,et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nat Geosci,2019,12 (6):424−429. doi: 10.1038/s41561-019-0352-4

    [3]

    Du YG,Ke X,Li JM,Wang YY,Cao GM,et al. Nitrogen deposition increases global grassland N2O emission rates steeply:a meta-analysis[J]. Catena,2021,199:105105. doi: 10.1016/j.catena.2020.105105

    [4]

    Wang YB,Jiang Q,Yang ZM,Sun W,Wang DL. Effects of water and nitrogen addition on ecosystem carbon exchange in a Meadow Steppe[J]. PLoS One,2015,10 (5):e0127695. doi: 10.1371/journal.pone.0127695

    [5] 王丽君,程瑞梅,肖文发,沈雅飞,曾立雄,等. 三峡库区马尾松人工林土壤酶活性和微生物生物量对氮添加的季节性响应[J]. 生态学报,2021,41(24):9857−9868. Wang LJ,Cheng RM,Xiao WF,Shen YF,Zeng LX,et al. Seasonal responses of soil enzyme activities and microbial biomass to nitrogen addition at different levels in Pinus massoniana plantation in the Three Gorges Reservoir Area[J]. Acta Ecologica Sinica,2021,41 (24):9857−9868.

    Wang LJ, Cheng RM, Xiao WF, Shen YF, Zeng LX, et al. Seasonal responses of soil enzyme activities and microbial biomass to nitrogen addition at different levels in Pinus massoniana plantation in the Three Gorges Reservoir Area[J]. Acta Ecologica Sinica, 2021, 41(24): 9857-9868.

    [6]

    Lu XK,Mo JM,Gilliam FS,Zhou GD,Fang YT. Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest[J]. Global Change Biol,2010,16 (10):2688−2700. doi: 10.1111/j.1365-2486.2010.02174.x

    [7]

    Zhang XF,Misra A,Nargund S,Coleman GD,Sriram G. Concurrent isotope-assisted metabolic flux analysis and transcriptome profiling reveal responses of poplar cells to altered nitrogen and carbon supply[J]. Plant J,2018,93 (3):472−488. doi: 10.1111/tpj.13792

    [8]

    Xia JY,Wan SQ. Global response patterns of terrestrial plant species to nitrogen addition[J]. New Phytol,2008,179 (2):428−439. doi: 10.1111/j.1469-8137.2008.02488.x

    [9]

    Cleveland CC,Townsend AR,Taylor P,Alvarez-Clare S,Bustamante MMC,et al. Relationships among net primary productivity,nutrients and climate in tropical rain forest:a pan-tropical analysis[J]. Ecol Lett,2011,14 (12):1313−1317. doi: 10.1111/j.1461-0248.2011.01711.x

    [10]

    Zheng LL,Zhao Q,Yu ZY,Zhao SY,Zeng DH. Altered leaf functional traits by nitrogen addition in a nutrient-poor pine plantation:a consequence of decreased phosphorus availability[J]. Sci Rep,2017,7 (1):7415. doi: 10.1038/s41598-017-07170-3

    [11]

    Manning P,Newington JE,Robson HR,Saunders M,Eggers T,et al. Decoupling the direct and indirect effects of nitrogen deposition on ecosystem function[J]. Ecol Lett,2006,9 (9):1015−1024. doi: 10.1111/j.1461-0248.2006.00959.x

    [12]

    Pisani O,Frey SD,Simpson AJ,Simpson MJ. Soil warming and nitrogen deposition alter soil organic matter composition at the molecular-level[J]. Biogeochemistry,2015,123 (3):391−409. doi: 10.1007/s10533-015-0073-8

    [13]

    Treseder KK. Nitrogen additions and microbial biomass:a meta-analysis of ecosystem studies[J]. Ecol Lett,2008,11 (10):1111−1120. doi: 10.1111/j.1461-0248.2008.01230.x

    [14]

    Su Y,Ma XF,Gong YM,Li KH,Han WX,Liu XJ. Responses and drivers of leaf nutrients and resorption to nitrogen enrichment across northern China’s grasslands:a meta-analysis[J]. Catena,2021,199:105−110.

    [15]

    Frey SD. Mycorrhizal fungi as mediators of soil organic matter dynamics[J]. Ann Rev Ecol Evolut Systemat,2019,50 (1):237−259. doi: 10.1146/annurev-ecolsys-110617-062331

    [16] 刘润进,唐明,陈应龙. 菌根真菌与植物抗逆性研究进展[J]. 菌物研究,2017,15(1):70−88. Liu RJ,Tang M,Chen YL. Recent advances in the study of mycorrhizal fungi and stress resistance of plants[J]. Journal of Fungal Research,2017,15 (1):70−88.

    Liu RJ, Tang M, Chen YL. Recent advances in the study of mycorrhizal fungi and stress resistance of plants[J]. Journal of Fungal Research, 2017, 15(1): 70-88.

    [17]

    Plett KL,Singan VR,Wang M,Ng V,Grigoriev IV,et al. Inorganic nitrogen availability alters Eucalyptus grandis receptivity to the ectomycorrhizal fungus Pisolithus albus but not symbiotic nitrogen transfer[J]. New Phytol,2020,226 (1):221−231. doi: 10.1111/nph.16322

    [18]

    Nehls U,Göhringer F,Wittulsky S,Dietz S. Fungal carbohydrate support in the ectomycorrhizal symbiosis:a review[J]. Plant Biol,2010,12 (2):292−301. doi: 10.1111/j.1438-8677.2009.00312.x

    [19]

    Lindahl BD,Tunlid A. Ectomycorrhizal fungi-potential organic matter decomposers,yet not saprotrophs[J]. New Phytol,2015,205 (4):1443−1447. doi: 10.1111/nph.13201

    [20]

    Luciano A,Oliveira VL,Filho GNS. Utilization of rocks and ectomycorrhizal fungi to promote growth of eucalypt[J]. Brazil J Microbiol,2010,41 (3):676−684. doi: 10.1590/S1517-83822010000300018

    [21]

    Smits MM,Bonneville S,Benning LG,Banwart SA,Leake JR. Plant-driven weathering of apatite-the role of an ectomycorrhizal fungus[J]. Geobiology,2012,10 (5):445−456. doi: 10.1111/j.1472-4669.2012.00331.x

    [22]

    Plett KL,Snijders F,Castañeda-Gómez L,Wong-Bajracharya JWH,Anderson IC,et al. Nitrogen fertilization differentially affects the symbiotic capacity of two co-occurring ectomycorrhizal species[J]. Environ Microbiol,2022,24 (1):309−323. doi: 10.1111/1462-2920.15879

    [23] 张雪,梅莉,宋利豪,刘力诚,赵泽尧. 模拟氮沉降对马尾松土壤微生物群落结构及温室气体释放的影响[J]. 生态学报,2019,39(6):1917−1925. Zhang X,Mei L,Song LH,Liu LC,Zhao ZY. Effects of simulated nitrogen deposition on microbial community and greenhouse gases emission of Pinus massoniana soil[J]. Acta Ecologica Sinica,2019,39 (6):1917−1925.

    Zhang X, Mei L, Song LH, Liu LC, Zhao ZY. Effects of simulated nitrogen deposition on microbial community and greenhouse gases emission of Pinus massoniana soil[J]. Acta Ecologica Sinica, 2019, 39(6): 1917-1925.

    [24]

    Kwaku EA,Dong SK,Shen H,Li W,Sha W,et al. Biomass and species diversity of different alpine plant communities respond differently to nitrogen deposition and experimental warming[J]. Plants,2021,10 (12):2719. doi: 10.3390/plants10122719

    [25]

    Wang JJ,Hussain S,Sun X,Zhang P,Javed T,et al. Effects of nitrogen application rate under straw incorporation on photosynthesis,productivity and nitrogen use efficiency in winter wheat[J]. Front Plant Sci,2022,13:862088. doi: 10.3389/fpls.2022.862088

    [26]

    Högberg MN,Högberg P,Wallander H,Nilsson LO. Carbon-nitrogen relations of ectomycorrhizal mycelium across a natural nitrogen supply gradient in boreal forest[J]. New Phytol,2021,232 (4):1839−1848. doi: 10.1111/nph.17701

    [27] 薛璟花,莫江明,李炯,方运霆,李德军. 氮沉降对外生菌根真菌的影响[J]. 生态学报,2004,24(8):1785−1792. Xue JH,Mo JM,Li J,Fang YT,Li DJ. Effects of nitrogen deposition on ectomycorrhizal fungi[J]. Acta Ecologica Sinica,2004,24 (8):1785−1792.

    Xue JH, Mo JM, Li T, Fang YT, Li DJ. Effects of nitrogen deposition on ectomycorrhizal fungi[J]. Acta Ecologica Sinica, 2004, 24(8): 1785-1792.

    [28] 方兴,钟章成. 增强UV-B辐射和氮对谷子叶光合色素及非酶促保护物质的影响[J]. 生态学报,2012,32(23):7411−7420. Fang X,Zhong ZC. Effects of enhanced UV-B radiation and nitrogen on photosynthetic pigments and non-enzymatic protection system in leaves of foxtail millet (Setaria italica (L. ) Beauv. )[J]. Acta Ecologica Sinica,2012,32 (23):7411−7420. doi: 10.5846/stxb201201160095

    Fang X, Zhong ZC. Effects of enhanced UV-B radiation and nitrogen on photosynthetic pigments and non-enzymatic protection system in leaves of foxtail millet (Setaria italica (L. ) Beauv. )[J]. Acta Ecologica Sinica, 2012, 32(23): 7411-7420. doi: 10.5846/stxb201201160095

    [29] 兰艳,伍鑫,王锦,吴超越,段强,等. 施氮量对绿米稻叶绿素含量及光合特性的影响[J]. 云南农业大学学报(自然科学),2021,36(4):566−572. Lan Y,Wu X,Wang J,Wu CY,Duan Q,et al. Effect of nitrogen application rates on the chlorophyll content and photosynthetic characteristics of green rice[J]. Journal of Yunnan Agricultural University (Natural Science),2021,36 (4):566−572. doi: 10.12101/j.issn.1004-390X(n).202007016

    Lan Y, Wu X, Wang J, Wu CY, Duan Q, et al. Effect of nitrogen application rates on the chlorophyll content and photosynthetic characteristics of green rice[J]. Journal of Yunnan Agricultural University (Natural Science), 2021, 36(4): 566-572. doi: 10.12101/j.issn.1004-390X(n).202007016

    [30] 彭思利,王晓燕,李剑,夏大娟,葛之葳,薛建辉. 外生菌根真菌接种对干旱胁迫下构树幼苗生长及光合特性的影响[J]. 生态学杂志,2021,40(9):2719−2726. Peng SL,Wang XY,Li J,Xia DJ,Ge ZW,Xue JH. Effects of ectomycorrhizal fungi inoculation on growth and photosynthetic characteristics of Broussonetia papyrifera seedlings under drought stress[J]. Chinese Journal of Ecology,2021,40 (9):2719−2726.

    Peng SL, Wang XY, Li J, Xia DJ, Ge ZW, Xue JH. Effects of ectomycorrhizal fungi inoculation on growth and photosynthetic characteristics of Broussonetia papyrifera seedlings under drought stress[J]. Chinese Journal of Ecology, 2021, 40(9): 2719-2726.

    [31] 胡倩,刘天泉,陈晓龙,王凌晖,滕维超. 模拟氮沉降对桢楠幼苗生理特性的影响[J]. 广西林业科学,2018,47(4):469−472. Hu Q,Liu TQ,Chen XL,Wang LH,Teng WC. Effects of nitrogen deposition on physiological characteristics of phoebe Zhennan seedlings[J]. Guangxi Forestry Science,2018,47 (4):469−472.

    Hu Q, Liu TQ, Chen XL, Wang LH, Teng WC. Effects of nitrogen deposition on physiological characteristics of phoebe Zhennan seedlings[J]. Guangxi Forestry Science, 2018, 47(4): 469-472.

    [32] 彭礼琼,金则新,王强. 模拟氮沉降对夏蜡梅幼苗生理生态特性的影响[J]. 生态学杂志,2014,33(4):989−995. Peng LQ,Jin ZX,Wang Q. Effects of simulated nitrogen deposition on the eco-physiological characteristics of Sinocalycanthus chinensis seedlings[J]. Chinese Journal of Ecology,2014,33 (4):989−995.

    Peng LQ, Jin ZX, Wang Q. Effects of simulated nitrogen deposition on the eco-physiological characteristics of Sinocalycanthus chinensis seedlings[J]. Chinese Journal of Ecology, 2014, 33(4): 989-995.

    [33]

    Wang GJ,Zeng FL,Song S,Sun B,Wang Q,Wang JY. Effects of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves[J]. J Plant Physiol,2022,272:153669. doi: 10.1016/j.jplph.2022.153669

    [34]

    Galardis MMB,Sánchez RCL,Fall F,Eichler-Löbermann B,Pruneau L,Bâ AM. Growth and physiological responses of ectomycorrhizal Coccoloba uvifera (L. ) L. seedlings to salt stress[J]. J Arid Environ,2022,196:104650. doi: 10.1016/j.jaridenv.2021.104650

    [35] 刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007: 225-227.
    [36] 李文娆,李永竞,冯士珍. 不同施氮量和分施比例对棉花幼苗生长和水分利用效率的影响及其根源ABA调控效应[J]. 生态学报,2017,37(20):6712−6723. Li WR,Li YJ,Feng SZ. Regulation of root-sourced ABA to growth and water use efficiency of cotton seedlings and their response to different nitrogen levels and distribution ratios[J]. Acta Ecologica Sinica,2017,37 (20):6712−6723.

    Li WR, Li YJ, Feng SZ. Regulation of root-sourced ABA to growth and water use efficiency of cotton seedlings and their response to different nitrogen levels and distribution ratios[J]. Acta Ecologica Sinica, 2017, 37(20): 6712-6723.

    [37]

    Wu F,Zhang HQ,Fang FR,Wu N,Zhang YX,Tang M. Effects of nitrogen and exogenous Rhizophagus irregularis on the nutrient status,photosynthesis and leaf anatomy of Populus × canadensis 'Neva'[J]. J Plant Growth Regulat,2017,36 (4):824−835. doi: 10.1007/s00344-017-9686-6

    [38] 展小云,于贵瑞,盛文萍,方华军. 中国东部南北样带森林优势植物叶片的水分利用效率和氮素利用效率[J]. 应用生态学报,2012,23(3):587−594. Zhan XY,Yu GR,Sheng WP,Fang HJ. Foliar water use efficiency and nitrogen use efficiency of dominant plant species in main forests along the North-South Transect of East China[J]. Chinese Journal of Applied Ecology,2012,23 (3):587−594.

    Zhan XY, Yu GR, Sheng WP, Fang HJ. Foliar water use efficiency and nitrogen use efficiency of dominant plant species in main forests along the North-South Transect of East China[J]. Chinese Journal of Applied Ecology, 2012, 23(3): 587-594.

  • 期刊类型引用(4)

    1. 张玉虎,闫添艺,张骁,钟诗焕,张桃香. 不同遗传型土生空团菌对马尾松生长影响及促生效果评价. 东北林业大学学报. 2025(06): 88-97 . 百度学术
    2. 李艺雪,叶冬梅,郝龙飞,刘婷岩,段嘉靖,聂正英. 土壤灭菌、AM真菌接种与氮添加对柠条根际土壤的影响. 植物研究. 2024(04): 590-601 . 百度学术
    3. 亓新海,亓军霞,尚建磊,唐敬伟,赵静. 松乳菇外生菌根对马尾松幼苗生长的影响分析. 特种经济动植物. 2024(07): 27-30 . 百度学术
    4. 倪秀雅,温昊,王轶浩,冯永霞,陈展. 亚热带酸雨区不同林型中马尾松外生菌根的根尖真菌群落特征. 陆地生态系统与保护学报. 2023(05): 31-40 . 百度学术

    其他类型引用(2)

图(2)  /  表(3)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  70
  • PDF下载量:  35
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-06-29
  • 修回日期:  2022-09-02
  • 网络出版日期:  2023-03-02
  • 刊出日期:  2023-02-27

目录

    /

    返回文章
    返回