Advances in the negative density-dependent hypothesis
-
摘要:
负密度制约假说被认为是维持热带森林较高生物多样性的重要机制之一,其主要描述由于资源竞争和有害生物侵害,导致同种个体死亡率增加,从而为其他物种提供生存空间和资源,促进物种共存。通过介绍不同气候带影响负密度制约的驱动因子,以及影响负密度制约强度的生物和非生物因子,本文阐述了最近十余年负密度制约相关研究的进展。其次,通过介绍负密度制约的纬度梯度格局及其存在的争议,讨论了负密度制约的理论意义。最后,利用文献计量学分析方法,探讨了负密度制约近年来的发展趋势以及今后的发展方向。
Abstract:The negative density-dependent hypothesis posits that increased mortality rates among conspecific individuals due to resource competition and harmful pest infestation, facilitate the provision of space and resources for other species, thereby promoting species coexistence. This mechanism is considered important for maintaining high biodiversity in tropical forests. The current review offers a comprehensive summary of advancements in negative density-dependent research over the past decade, including its drivers in different climatic zones, biotic and abiotic factors influencing its strength, latitudinal patterns, and current controversies. Based on bibliometric analysis, this review also discusses the latest trends and development directions in the field of negative density dependence.
-
-
-
[1] Wright JS. Plant diversity in tropical forests:a review of mechanisms of species coexistence[J]. Oecologia,2002,130 (1):1−14. doi: 10.1007/s004420100809
[2] Grubb PJ. The maintenance of species-richness in plant communities:the importance of the regeneration niche[J]. Biol Rev,1977,52 (1):107−145.
[3] Hutchinson GE. Population studies:animal ecology and demography[J]. Bull Math Biol,1991,53 (1-2):193−213. doi: 10.1016/S0092-8240(05)80046-1
[4] Tilman D. Niche tradeoffs,neutrality,and community structure:a stochastic theory of resource competition,invasion,and community assembly[J]. Proc Natl Acad Sci USA,2004,101 (30):10854−10861. doi: 10.1073/pnas.0403458101
[5] Janzen DH. Herbivores and the number of tree species in tropical forests[J]. Am Nat,1970,104 (940):501−528. doi: 10.1086/282687
[6] Connell JH. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees[M]//Den Boer PJ, Gradwell GR, eds. Dynamics of Populations. Wageningen: Centre for Agricultural Publishing and Documentation PU-DOC, 1971: 298-312.
[7] Hubbell SP. The Unified Neutral Theory of Biodiversity and Biogeography[M]. Princeton: Princeton University Press, 2001: 48-75.
[8] Volkov I,Banavar JR,Hubbell SP,Maritan A. Neutral theory and relative species abundance in ecology[J]. Nature,2003,424 (6952):1035−1037. doi: 10.1038/nature01883
[9] Hubbell SP. Tree dispersion,abundance,and diversity in a tropical dry forest[J]. Science,1979,203 (4387):1299−1309. doi: 10.1126/science.203.4387.1299
[10] Condit R,Hubbell SP,Foster RB. Recruitment near conspecific adults and the maintenance of tree and shrub diversity in a neotropical forest[J]. Am Nat,1992,140 (2):261−286. doi: 10.1086/285412
[11] Wills C,Condit R,Foster RB,Hubbell SP. Strong density- and diversity-related effects help to maintain tree species diversity in a neotropical forest[J]. Proc Natl Acad Sci USA,1997,94 (4):1252−1257. doi: 10.1073/pnas.94.4.1252
[12] Packer A,Clay K. Soil pathogens and spatial patterns of seedling mortality in a temperate tree[J]. Nature,2000,404 (6775):278−281. doi: 10.1038/35005072
[13] Zhu Y,Mi XC,Ren HB,Ma KP. Density dependence is prevalent in a heterogeneous subtropical forest[J]. Oikos,2010,119 (1):109−119. doi: 10.1111/j.1600-0706.2009.17758.x
[14] Johnson DJ,Beaulieu WT,Bever JD,Clay K. Conspecific negative density dependence and forest diversity[J]. Science,2012,336 (6083):904−907. doi: 10.1126/science.1220269
[15] 祝燕,米湘成,马克平. 植物群落物种共存机制:负密度制约假说[J]. 生物多样性,2009,17(6):594−604. doi: 10.3724/SP.J.1003.2009.09183 Zhu Y,Mi XC,Ma KP. A mechanism of plant species coexistence:the negative density-dependent hypothesis[J]. Biodiversity Science,2009,17 (6):594−604. doi: 10.3724/SP.J.1003.2009.09183
[16] Ridley HN. The Dispersal of Plants Throughout the World[M]. Ashford, Kent: L. Reeve & Co. , Lloyds Bank Buildings, 1931: 335-383.
[17] Black GA,Dobzhansky T,Pavan C. Some attempts to estimate species diversity and population density of trees in amazonian forests[J]. Bot Gaz,1950,111 (4):413−425. doi: 10.1086/335612
[18] Pires JM,Dobzhansky T,Black GA. An estimate of the number of species of trees in an amazonian forest community[J]. Bot Gaz,1953,114 (4):467−477. doi: 10.1086/335790
[19] Hyatt LA,Rosenberg MS,Howard TG,Bole G,Fang W,et al. The distance dependence prediction of the Janzen-Connell hypothesis:a meta-analysis[J]. Oikos,2003,103 (3):590−602. doi: 10.1034/j.1600-0706.2003.12235.x
[20] Comita LS,Queenborough SA,Murphy SJ,Eck JL,Xu KY,et al. Testing predictions of the Janzen-Connell hypothesis:a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival[J]. J Ecol,2014,102 (4):845−856. doi: 10.1111/1365-2745.12232
[21] Hubbell SP,Condit R,Foster RB. Presence and absence of density dependence in a neotropical tree community[J]. Philos Trans Roy Soc B Biol Sci,1990,330 (1257):269−281. doi: 10.1098/rstb.1990.0198
[22] Condit R,Hubbell SP,Foster RB. Density dependence in two understory tree species in a neotropical forest[J]. Ecology,1994,75 (3):671−680. doi: 10.2307/1941725
[23] 米湘成,王绪高,沈国春,刘徐兵,宋晓阳,等. 中国森林生物多样性监测网络:二十年群落构建机 制探索的回顾与展望[J]. 生物多样性,2022,30(10):207−229. Mi XC,Wang XG,Shen GC,Liu XB,Song XY,et al. Chinese Forest Biodiversity Monitoring Network (CForBio):twenty years of exploring community assembly mechanisms and prospects for future research[J]. Biodiversity Science,2022,30 (10):207−229.
[24] Bagchi R,Gallery RE,Gripenberg S,Gurr SJ,Narayan L,et al. Pathogens and insect herbivores drive rainforest plant diversity and composition[J]. Nature,2014,506 (7486):85−88. doi: 10.1038/nature12911
[25] Bell T,Freckleton RP,Lewis OT. Plant pathogens drive density-dependent seedling mortality in a tropical tree[J]. Ecol Lett,2006,9 (5):569−574. doi: 10.1111/j.1461-0248.2006.00905.x
[26] Forrister DL,Endara MJ,Younkin GC,Coley PD,Kursar TA. Herbivores as drivers of negative density dependence in tropical forest saplings[J]. Science,2019,363 (6432):1213−1216. doi: 10.1126/science.aau9460
[27] Liu XB,Etienne RS,Liang MX,Wang YF,Yu SX. Experimental evidence for an intraspecific Janzen-Connell effect mediated by soil biota[J]. Ecology,2015,96 (3):662−671. doi: 10.1890/14-0014.1
[28] Chen L,Swenson NG,Ji NN,Mi XC,Ren HB,et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest[J]. Science,2019,366 (6461):124−128. doi: 10.1126/science.aau1361
[29] Segnitz RM,Russo SE,Davies SJ,Peay KG. Ectomycorrhizal fungi drive positive phylogenetic plant-soil feedbacks in a regionally dominant tropical plant family[J]. Ecology,2020,101 (8):e03083. doi: 10.1002/ecy.3083
[30] Jiang F,Zhu K,Cadotte MW,Jin GZ. Tree mycorrhizal type mediates the strength of negative density dependence in temperate forests[J]. J Ecol,2020,108 (6):2601−2610. doi: 10.1111/1365-2745.13413
[31] Murphy SJ,Comita LS. Large mammalian herbivores contribute to conspecific negative density dependence in a temperate forest[J]. J Ecol,2021,109 (3):1194−1209. doi: 10.1111/1365-2745.13545
[32] Jia SH,Wang XG,Yuan ZQ,Lin F,Ye J,et al. Tree species traits affect which natural enemies drive the Janzen-Connell effect in a temperate forest[J]. Nat Commun,2020,11 (1):286. doi: 10.1038/s41467-019-14140-y
[33] Urban MC. Accelerating extinction risk from climate change[J]. Science,2015,348 (6234):571−573. doi: 10.1126/science.aaa4984
[34] Trisos CH,Merow C,Pigot AL. The projected timing of abrupt ecological disruption from climate change[J]. Nature,2020,580 (7804):496−501. doi: 10.1038/s41586-020-2189-9
[35] Bachelot B,Alonso-Rodríguez AM,Aldrich-Wolfe L,Cavaleri MA,Reed SC,Wood TE. Altered climate leads to positive density-dependent feedbacks in a tropical wet forest[J]. Glob Change Biol,2020,26 (6):3417−3428. doi: 10.1111/gcb.15087
[36] Song XY,Zhang WF,Johnson DJ,Yang J,Asefa M,et al. Conspecific negative density dependence in rainy season enhanced seedling diversity across habitats in a tropical forest[J]. Oecologia,2020,193 (4):949−957. doi: 10.1007/s00442-020-04729-2
[37] Song XY,Johnson DJ,Cao M,Umaña MN,Deng XB,et al. The strength of density-dependent mortality is contingent on climate and seedling size[J]. J Veg Sci,2018,29 (4):662−670. doi: 10.1111/jvs.12645
[38] Bai XJ,Queenborough SA,Wang XG,Zhang J,Li BH,et al. Effects of local biotic neighbors and habitat heterogeneity on tree and shrub seedling survival in an old-growth temperate forest[J]. Oecologia,2012,170 (3):755−765. doi: 10.1007/s00442-012-2348-2
[39] LaManna JA,Walton ML,Turner BL,Myers JA. Negative density dependence is stronger in resource-rich environments and diversifies communities when stronger for common but not rare species[J]. Ecol Lett,2016,19 (6):657−667. doi: 10.1111/ele.12603
[40] Xu M,Yu SX. Elevational variation in density dependence in a subtropical forest[J]. Ecol Evol,2014,4 (14):2823−2833. doi: 10.1002/ece3.1123
[41] Le Bagousse-Pinguet Y,Gross N,Saiz H,Maestre FT,Ruiz S,et al. Functional rarity and evenness are key facets of biodiversity to boost multifunctionality[J]. Proc Natl Acad Sci USA,2021,118 (7):e2019355118. doi: 10.1073/pnas.2019355118
[42] Connell JH,Tracey JG,Webb LJ. Compensatory recruitment,growth,and mortality as factors maintaining rain forest tree diversity[J]. Ecol Monogr,1984,54 (2):141−164. doi: 10.2307/1942659
[43] Queenborough SA,Burslem DFRP,Garwood NC,Valencia R. Neighborhood and community interactions determine the spatial pattern of tropical tree seedling survival[J]. Ecology,2007,88 (9):2248−2258. doi: 10.1890/06-0737.1
[44] Lin LX,Comita LS,Zheng Z,Cao M. Seasonal differentiation in density-dependent seedling survival in a tropical rain forest[J]. J Ecol,2012,100 (4):905−914. doi: 10.1111/j.1365-2745.2012.01964.x
[45] Comita LS,Muller-Landau HC,Aguilar S,Hubbell SP. Asymmetric density dependence shapes species abundances in a tropical tree community[J]. Science,2010,329 (5989):330−332. doi: 10.1126/science.1190772
[46] Mangan SA,Schnitzer SA,Herre EA,Mack KML,Valencia MC,et al. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest[J]. Nature,2010,466 (7307):752−755. doi: 10.1038/nature09273
[47] Klironomos JN. Feedback with soil biota contributes to plant rarity and invasiveness in communities[J]. Nature,2002,417 (6884):67−70. doi: 10.1038/417067a
[48] Yenni G,Adler PB,Ernest SKM. Do persistent rare species experience stronger negative frequency dependence than common species?[J]. Glob Ecol Biogeogr,2017,26 (5):513−523. doi: 10.1111/geb.12566
[49] Marx DH. Ectomycorrhizae as biological deterrents to pathogenic root infections[J]. Annu Rev Phytopathol,1972,10:429−454. doi: 10.1146/annurev.py.10.090172.002241
[50] Brown AJ,Payne CJ,White PS,Peet RK. Shade tolerance and mycorrhizal type may influence sapling susceptibility to conspecific negative density dependence[J]. J Ecol,2020,108 (1):325−336. doi: 10.1111/1365-2745.13237
[51] McCarthy-Neumann S,Ibáñez I. Plant-soil feedback links negative distance dependence and light gradient partitioning during seedling establishment[J]. Ecology,2013,94 (4):780−786. doi: 10.1890/12-1338.1
[52] Kobe RK,Vriesendorp CF. Conspecific density dependence in seedlings varies with species shade tolerance in a wet tropical forest[J]. Ecol Lett,2011,14 (5):503−510. doi: 10.1111/j.1461-0248.2011.01612.x
[53] Karst J,Jones MD,Hoeksema JD. Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests[J]. Nat Ecol Evol,2023,7 (4):501−511. doi: 10.1038/s41559-023-01986-1
[54] Lambers JHR,Clark JS,Beckage B. Density-dependent mortality and the latitudinal gradient in species diversity[J]. Nature,2002,417 (6890):732−735. doi: 10.1038/nature00809
[55] Paine CET,Norden N,Chave J,Forget PM,Fortunel C,et al. Phylogenetic density dependence and environmental filtering predict seedling mortality in a tropical forest[J]. Ecol Lett,2012,15 (1):34−41. doi: 10.1111/j.1461-0248.2011.01705.x
[56] Lamanna JA,Mangan SA,Alonso A,Bourg NA,Brockelman WY,et al. Plant diversity increases with the strength of negative density dependence at the global scale[J]. Science,2017,356 (6345):1389−1392. doi: 10.1126/science.aam5678
[57] Chisholm RA,Fung T. Comment on “plant diversity increases with the strength of negative density dependence at the global scale”[J]. Science,2018,360 (6391):eaar4685.
[58] Hülsmann L,Hartig F. Comment on “plant diversity increases with the strength of negative density dependence at the global scale”[J]. Science,2018,360 (6391):eaar2435. doi: 10.1126/science.aar2435
[59] LaManna JA,Mangan SA,Alonso A,Bourg NA,Brockelman WY,et al. Response to comment on “plant diversity increases with the strength of negative density dependence at the global scale”[J]. Science,2018,360 (6391):eaar3824. doi: 10.1126/science.aar3824
[60] LaManna JA,Mangan SA,Alonso A,Bourg NA,Brockelman WY,et al. Response to comment on “plant diversity increases with the strength of negative density dependence at the global scale”[J]. Science,2018,360 (6391):eaar5245. doi: 10.1126/science.aar5245
[61] Pianka ER. Latitudinal gradients in species diversity:a review of concepts[J]. Am Nat,1966,100 (910):33−46. doi: 10.1086/282398
[62] Heil M,McKey D. Protective ant-plant interactions as model systems in ecological and evolutionary research[J]. Annu Rev Ecol Evol Syst,2003,34:425−453. doi: 10.1146/annurev.ecolsys.34.011802.132410
[63] Palmer TM,Stanton ML,Young TP. Competition and coexistence:exploring mechanisms that restrict and maintain diversity within mutualist guilds[J]. Am Nat,2003,162 (S4):S63−S79. doi: 10.1086/378682
[64] Rosumek FB,Silveira FAO,de S. Neves F,de U. Barbosa NP,Diniz L,et al. Ants on plants:a meta-analysis of the role of ants as plant biotic defenses[J]. Oecologia,2009,160 (3):537−549. doi: 10.1007/s00442-009-1309-x
[65] Johnson DJ,Condit R,Hubbell SP,Comita LS. Abiotic niche partitioning and negative density dependence drive tree seedling survival in a tropical forest[J]. Proc Roy Soc B Biol Sci,2017,284 (1869):20172210.
-
期刊类型引用(0)
其他类型引用(1)