高级检索+

快速筛选拟南芥受精和早期胚胎发生相关基因的方法

黄洁, 李鑫波, 严海龙, 陈丹, 孙蒙祥, 彭雄波

黄洁, 李鑫波, 严海龙, 陈丹, 孙蒙祥, 彭雄波. 快速筛选拟南芥受精和早期胚胎发生相关基因的方法[J]. 植物科学学报, 2015, 33(4): 564-571. DOI: 10.11913/PSJ.2095-0837.2015.40564
引用本文: 黄洁, 李鑫波, 严海龙, 陈丹, 孙蒙祥, 彭雄波. 快速筛选拟南芥受精和早期胚胎发生相关基因的方法[J]. 植物科学学报, 2015, 33(4): 564-571. DOI: 10.11913/PSJ.2095-0837.2015.40564
HUANG Jie, LI Xin-Bo, YAN Hai-Long, CHEN Dan, SUN Meng-Xiang, PENG Xiong-Bo. A Convenient Method for Screening Genes Related to Fertilization and Embryogenesis in Arabidopsis[J]. Plant Science Journal, 2015, 33(4): 564-571. DOI: 10.11913/PSJ.2095-0837.2015.40564
Citation: HUANG Jie, LI Xin-Bo, YAN Hai-Long, CHEN Dan, SUN Meng-Xiang, PENG Xiong-Bo. A Convenient Method for Screening Genes Related to Fertilization and Embryogenesis in Arabidopsis[J]. Plant Science Journal, 2015, 33(4): 564-571. DOI: 10.11913/PSJ.2095-0837.2015.40564
黄洁, 李鑫波, 严海龙, 陈丹, 孙蒙祥, 彭雄波. 快速筛选拟南芥受精和早期胚胎发生相关基因的方法[J]. 植物科学学报, 2015, 33(4): 564-571. CSTR: 32231.14.PSJ.2095-0837.2015.40564
引用本文: 黄洁, 李鑫波, 严海龙, 陈丹, 孙蒙祥, 彭雄波. 快速筛选拟南芥受精和早期胚胎发生相关基因的方法[J]. 植物科学学报, 2015, 33(4): 564-571. CSTR: 32231.14.PSJ.2095-0837.2015.40564
HUANG Jie, LI Xin-Bo, YAN Hai-Long, CHEN Dan, SUN Meng-Xiang, PENG Xiong-Bo. A Convenient Method for Screening Genes Related to Fertilization and Embryogenesis in Arabidopsis[J]. Plant Science Journal, 2015, 33(4): 564-571. CSTR: 32231.14.PSJ.2095-0837.2015.40564
Citation: HUANG Jie, LI Xin-Bo, YAN Hai-Long, CHEN Dan, SUN Meng-Xiang, PENG Xiong-Bo. A Convenient Method for Screening Genes Related to Fertilization and Embryogenesis in Arabidopsis[J]. Plant Science Journal, 2015, 33(4): 564-571. CSTR: 32231.14.PSJ.2095-0837.2015.40564

快速筛选拟南芥受精和早期胚胎发生相关基因的方法

基金项目: 国家自然科学基金面上项目(31070280)。
详细信息
    作者简介:

    黄洁(1990-),女,硕士研究生,研究方向为植物发育生物学(E-mail:huangjie@whu.edu.cn)。

    通讯作者:

    彭雄波 E-mail: bobopx@whu.edu.cn

  • 中图分类号: 944.4

A Convenient Method for Screening Genes Related to Fertilization and Embryogenesis in Arabidopsis

  • 摘要: 阐明拟南芥受精和早期胚胎发生过程对理解被子植物生殖发育有着重要的指导意义,而利用正向遗传学方法研究拟南芥突变体的表型及其分子机理是探究植物基因功能最常用的一种方法。基于常规的插入突变(包括T-DNA和转座子)、化学诱变(如ethylmethane sulfonate,EMS)和高能射线方法构建的突变体库中假阳性突变体多,难以高效筛选到受精和早期胚胎发生相关基因的突变体。为解决这一难题,本研究建立了一种构建T-DNA插入突变体文库的新方法。即在载体pCAMBIA1302的T-DNA元件上增加花粉特异荧光标记基因(pLAT52::EGFP),并遗传转化具有四分体花粉的Columbia野生型拟南芥突变体qrt1-2;对获得的突变体库可利用花粉荧光快速排除假阳性突变体,并采用反向PCR (inverse-PCR)扩增技术确定突变位点。此方法在筛选拟南芥受精和早期胚胎发生相关基因突变体上的成功应用表明,其是一种效率高、针对性强、操作相对快捷方便的拟南芥突变体筛选方法。
    Abstract: Research on early embryogenesis and fertilization is a central issue for understanding sexual reproduction in higher plants. The forward genetic method e.g. mutation, is commonly used to explore the physiological functions of genes in plants. However, the high false positive rate in mutant libraries based on regular mutagenesis methods, for example T-DNA insertion, transposon, ethylmethane sulfonate and high-energy rays, retard the screening of mutants related to fertilization and early embryogenesis. To solve this problem, we developed a new method to construct mutant stock. We introduced a pollen-specific fluorescence marker (pLAT52::EGFP) into the T-DNA element of the plasmid pCAMBIA1302, then transferred it into the qrt1-2 mutant, in which the four products of microsporogenesis remained fused and pollen grains were released as tetrads, to construct a T-DNA insertion mutant library. This allowed us to discard the false positive mutants rapidly by simply visualizing the fluorescence of pollen. In addition, we could determine the mutated gene locus of candidate mutants through inverse-PCR. Results showed that this method could help screen mutants related to fertilization and early embryo development rapidly and identify the mutated gene locus efficiently.
  • [1] 曹冬梅,范喜英,王云山,唐黎芳. 拟南芥激活标签突变体库的构建及突变体表型的分析[J] .农业生物技术学报,2008,16(2): 292-298.
    [2] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature,2000, 408(6814): 796-815.
    [3] 孙万刚. 拟南芥突变体构建方法及目的基因分离鉴定技术[J]. 安徽农业科学,2010,38(18): 9433- 9434.
    [4] Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis[J]. Genetics, 2003, 164(2): 731-740.
    [5] Parry MA, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M,Phillips AL. Mutation discovery for crop improvement[J]. J Exp Bot, 2009, 60(10): 2817-2825.
    [6] 宋磊, 杨仲南, 吴世福, 崔永兰. 拟南芥网状突变体E-210基因精细定位[J].植物科学学报,2008, 26(5): 437-442.
    [7] Springer PS. Gene traps: tools for plant development and genomics[J]. Plant Cell, 2000, 12(7): 1007-1020.
    [8] An G, Lee S, Kim SH, Kim SR. Molecular gene-tics using T-DNA in rice[J]. Plant Cell Physiol, 2005, 46(1): 14-22.
    [9] Schneeberger RG, Zhang K, Tatarinova T, Troukhan M, Kwok SF, Drais J, Klinger K, Orejudos F, Macy K, Bhakta A, Burns J, Subramanian G, Donson J, Flavell R, Feldmann KA. Agrobacterium T-DNA integration in Arabidopsis is correlated with DNA sequence compositions that occur frequently in gene promoter regions[J]. Funct Integr Genomics, 2005, 5(4): 240-253.
    [10] 崔清志,刘晓红,陈惠明. EMS诱变技术研究进展[J]. 湖南农业科学,2013,13(5): 7-9.
    [11] 阎双勇,谭振波,李仕贵. 水稻插入突变体库构建研究进展[J]. 中国生物工程杂志,2004,24(6): 48-53.
    [12] Brink RA, Cooper DC. Double fertilization and development of the seed in angiosperms[J]. Botanical Gazette, 1940, 102(1): 1-25.
    [13] Preuss D, Rhee SY, Davis RW. Tetrad analysis possible in Arabidopsis with mutation of the QUARTET(QRT)genes[J]. Science, 1994, 264(5164): 1458-1460.
    [14] Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiologia Plantarum, 1962, 15(3): 473-497.
    [15] Clough SJ,Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant J, 1998, 16(6): 735-743.
    [16] 曾凡锁,詹亚光. 转基因植物中外源基因的整合特性及其研究策略[J]. 植物学通报,2004,21(5): 565-577.
    [17] 梁春莉,刘孟军,赵锦. 植物种子败育研究进展[J]. 分子植物育种,2005,3(1): 117-122.
    [18] Mathur J, Szabados L, Schaefer S, Grunenberg B, Lossow A, Jonas-Straube E, Schell J, Koncz C,Koncz-Kalman Z. Gene identification with sequenced T-DNA tags generated by transformation of Arabidopsis cell suspension[J]. Plant J, 1998, 13(5): 707-716.
    [19] Souer E, Quattrocchio F, de Vetten N, Mol J, Koes R. A general method to isolate genes tagged by a high copy number transposable element[J]. Plant J, 1995, 7(4): 677-685
    [20] 赵霞,周波,李玉花. T-DNA 插入突变在植物功能基因组学中的应用[J]. 生物技术通讯,2009,6(20): 880-885.
    [21] Chen YH, Li HJ, Shi DQ, Yuan L, Liu J, Sreeni-vasan R, Baskar R, Grossniklaus U, Yang WC. The central cell plays a critical role in pollen tube guidance in Arabidopsis[J]. Plant Cell, 2007, 19(11): 3563-3577.
    [22] Gross-Hardt R, Kagi C, Baumann N, Moore JM, Baskar R, Gagliano WB, Jurgens G, Grossniklaus U. LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis[J]. PLoS Biol, 2007, 5(3): 494-500.
    [23] Wu JJ, Peng XB, Li WW, He R, Xin HP, Sun MX. Mitochondrial GCD1 dysfunction reveals reciprocal cell-to-cell signaling during the maturation of Arabidopsis female gametes[J]. Dev Cell, 2012, 23(5): 1043-1058.
  • 期刊类型引用(6)

    1. 江林琪,赵佳莹,郑飞雄,姚馨怡,李效贤,俞振明. 铁皮石斛14-3-3基因家族鉴定及表达分析. 生物技术通报. 2024(03): 229-241 . 百度学术
    2. 陈盈盈,吴丁洁,刘源,张航,刘艳娇,王晶宇,李瑞丽. 14-3-3蛋白及其在植物中的功能研究进展. 生物技术通报. 2024(04): 12-22 . 百度学术
    3. 任家玄,李艳梅,马维峰,吴宙,毛娟. 苹果14-3-3基因家族的鉴定与MdGRF13的功能分析. 果树学报. 2023(03): 405-421 . 百度学术
    4. 时兴伟,陈叶,李玉兰,袁哲明,董玉梅,李兰芝. 苦荞14-3-3基因家族生物信息学分析. 分子植物育种. 2021(05): 1473-1483 . 百度学术
    5. 易丹,王博,段慧荣,李毅,王丽蓉. 白刺14-3-3基因家族的鉴定及表达分析. 草地学报. 2021(03): 443-456 . 百度学术
    6. 邹禹,刘园园,钱宝云,占新春,郑乐娅,张炜,张培江. 水稻高盐胁迫下的酵母双杂交文库构建及OsRPK1胞内互作蛋白质的筛选. 江苏农业学报. 2019(04): 753-763 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数:  1349
  • HTML全文浏览量:  6
  • PDF下载量:  3047
  • 被引次数: 19
出版历程
  • 收稿日期:  2015-02-10
  • 发布日期:  2015-08-27

目录

    /

    返回文章
    返回