高级检索+

薇菜SSR分子标记的开发及遗传多样性初步探讨

赵杰, 王玢琪, 贾晓, 童益琴, 何义发, 葛台明

赵杰, 王玢琪, 贾晓, 童益琴, 何义发, 葛台明. 薇菜SSR分子标记的开发及遗传多样性初步探讨[J]. 植物科学学报, 2015, 33(6): 801-807. DOI: 10.11913/PSJ.2095-0837.2015.60801
引用本文: 赵杰, 王玢琪, 贾晓, 童益琴, 何义发, 葛台明. 薇菜SSR分子标记的开发及遗传多样性初步探讨[J]. 植物科学学报, 2015, 33(6): 801-807. DOI: 10.11913/PSJ.2095-0837.2015.60801
ZHAO Jie, WANG Bin-Qi, JIA Xiao, TONG Yi-Qin, HE Yi-Fa, GE Tai-Ming. Development of SSR Markers to Assess Genetic Diversity in Osmunda japonica Thunb.[J]. Plant Science Journal, 2015, 33(6): 801-807. DOI: 10.11913/PSJ.2095-0837.2015.60801
Citation: ZHAO Jie, WANG Bin-Qi, JIA Xiao, TONG Yi-Qin, HE Yi-Fa, GE Tai-Ming. Development of SSR Markers to Assess Genetic Diversity in Osmunda japonica Thunb.[J]. Plant Science Journal, 2015, 33(6): 801-807. DOI: 10.11913/PSJ.2095-0837.2015.60801
赵杰, 王玢琪, 贾晓, 童益琴, 何义发, 葛台明. 薇菜SSR分子标记的开发及遗传多样性初步探讨[J]. 植物科学学报, 2015, 33(6): 801-807. CSTR: 32231.14.PSJ.2095-0837.2015.60801
引用本文: 赵杰, 王玢琪, 贾晓, 童益琴, 何义发, 葛台明. 薇菜SSR分子标记的开发及遗传多样性初步探讨[J]. 植物科学学报, 2015, 33(6): 801-807. CSTR: 32231.14.PSJ.2095-0837.2015.60801
ZHAO Jie, WANG Bin-Qi, JIA Xiao, TONG Yi-Qin, HE Yi-Fa, GE Tai-Ming. Development of SSR Markers to Assess Genetic Diversity in Osmunda japonica Thunb.[J]. Plant Science Journal, 2015, 33(6): 801-807. CSTR: 32231.14.PSJ.2095-0837.2015.60801
Citation: ZHAO Jie, WANG Bin-Qi, JIA Xiao, TONG Yi-Qin, HE Yi-Fa, GE Tai-Ming. Development of SSR Markers to Assess Genetic Diversity in Osmunda japonica Thunb.[J]. Plant Science Journal, 2015, 33(6): 801-807. CSTR: 32231.14.PSJ.2095-0837.2015.60801

薇菜SSR分子标记的开发及遗传多样性初步探讨

基金项目: 国家自然科学基金重点项目(40930210)。
详细信息
    作者简介:

    赵杰(1989-),男,硕士研究生,研究方向为生物化学与分子生物学(E-mail:zj1989890616@126.com)。

  • 中图分类号: Q75

Development of SSR Markers to Assess Genetic Diversity in Osmunda japonica Thunb.

  • 摘要: 利用改良FIASCO法(Fast Isolation by AFLP Sequences COntaining repeats)开发出的9对多态性SSR引物评价了薇菜(Osmunda japonica Thunb.)2个野生居群(庐山和恩施)、1个栽培居群(恩施)的遗传多样性和遗传分化水平。结果显示,9个SSR标记在3个薇菜居群中共检测到47个等位基因,每个SSR位点的平均等位基因数为5.222个,观测杂合度和期望杂合度分别为0.000 ~ 0.944和0.577 ~ 0.834,香农指数为0.962 ~ 1.860,表明各SSR位点多态性较高;各居群的平均期望杂合度均大于平均观测杂合度且种内近交系数均为正值,说明3个薇菜居群中都存在非随机交配现象;对各居群的相关遗传多样性参数分析表明,恩施野生居群遗传多样性最高,而其栽培居群最低;庐山野生居群与恩施野生居群间遗传分化系数为0.092,说明两地野生薇菜居群的遗传分化程度较低,AMOVA分析也表明遗传变异主要存在于野生居群内部。
    Abstract: Nine SSR markers developed by a modified FIASCO (Fast Isolation by AFLP Sequences COntaining repeats) method were used to analyze the genetic diversity and differentiation of three Osmunda japonica Thunb. populations,including two wild populations from Lushan and Enshi and one cultured population from Enshi. A total of 47 alleles were detected in the three populations, with a mean NA(number of alleles) of 5.222. The observed heterozygosity and expected heterozygosity were 0.000-0.944 and 0.577-0.834, respectively. The Shannon index ranged from 0.962 to 1.860. Results suggested that the microsatellite loci were highly polymorphic. For each population, the average expected heterozygosity was higher than that of the observed heterozygosity, and the population inbreeding polymorphism coefficient was positive, indicating the existence of non-random mating. For the three populations, the wild population from Enshi harbored the most abundant genetic diversity, while the cultured population had the lowest. Low levels of genetic differentiation were found between the two wild populations (FST=0.092), which was supported by AMOVA analysis.
  • [1] 王谋强, 励启腾. 薇菜干的营养品质分析[J]. 植物资源与环境学报, 2006, 4(2): 63-64.
    [2] 何义发. 经济蕨类植物紫萁的研究进展与展望[J]. 湖北农业科学, 2002 (6): 101-103.
    [3] 梁运江, 李伟, 王维娜, 鲁宇菡, 何忠. 薇菜的生物学特性及人工繁殖[J]. 北华大学学报: 自然科学版, 2010, 11(2): 183-185.
    [4] 罗世家. 影响薇菜生长的主要环境因子分析[J]. 湖北民族学院学报: 自然科学版, 2001, 19(4): 8-10.
    [5] 朱英东. 薇菜野生资源恢复方法[J]. 蔬菜, 2014, (11): 50-51.
    [6] Milligan BG, Leebensmack J, Strand AE. Conservation genetics-beyond the maintenance of marker diversity[J]. Mol Ecol, 1994, 3(4): 423-435.
    [7] 张学义, 赵凤臣, 吴洪军, 张静, 安文和. 薇菜加工各阶段的营养成份分析[J]. 中国林副特产, 2000, (4):6-7.
    [8] 张钟, 史竹兰. 三种薇菜产品营养成分的分析与比较[J]. 中国林副特产, 2007 (1): 1-4.
    [9] 田瑞, 程超, 汪兴平. 野生与栽培薇菜的营养成分分析与评价[J]. 食品科学, 2011, 32(23): 297-300.
    [10] Powell W, Machray GC, Provan J. Polymorphism revealed by simple sequence repeats[J]. Trends Plant Sci, 1996, 1(7): 215-222.
    [11] Selkoe KA, Toonen RJ. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers[J]. Ecol Lett, 2006, 9(5): 615-629.
    [12] Yao XH, Ye QG, Kang M, Huang HW. Microsatellite analysis reveals interpopulation differentiation and gene flow in the endangered tree Changiostyrax dolichocarpa (Styracaceae) with fragmented distribution in central China[J]. New Phytol, 2007, 176(2): 472-480.
    [13] Xu JJ, Lin Y, Zhu ZD. Development and applications of SSR markers in plant pathogens[J]. Plant Prot, 2008, 34(1): 14-21.
    [14] Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation: A review[J]. Mol Ecol, 2002, 11(1): 1-16.
    [15] Doyle JJ, Doyle JL. A rapid DNA isolation procedure from small quantities of fresh leaf tissues[J]. Phytochem Bull, 1987, 19(1): 11-15.
    [16] 李磊, 敖日格乐, 王玢琪, 葛台明. 改良FIASCO方法筛选砷超富集植物蜈蚣草SSR分子标记[J]. 植物科学学报, 2014, 32(4): 413-420.
    [17] Tong YQ, Zhao J, Tao F, Li JH, Ge TM. Isolation and characterization of 16 highly polymorphic tetranucleotide microsatellite DNA markers in Paa spinosa[J]. Biochem Syst Ecol, 2014, 57: 257-261.
    [18] Li Q, Wan JM. SSRhunter: Development of a local searching software for SSR sites[J]. Hereditas(Beijing), 2005, 27(5): 808-810.
    [19] Bassam BJ, Gresshoff PM. Silver staining DNA in polyacrylamide gels[J]. Nat Protoc, 2007, 2(11): 2649-2654.
    [20] Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data[J]. Mol Ecol Notes, 2004, 4(3): 535-538.
    [21] Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX. POPGENE, the user-friendly shareware for population genetic analysis[M]. Edmonton: Molecular and Biotechnology Center, University of Alberta, 1997: 1-25.
    [22] 张鹏飞, 张福花, 张茹, 刘亚令, 王志广. 山西省榛属植物居群的SSR遗传多样性研究[J]. 植物科学学报, 2014, 32(2): 131-138.
    [23] Slatkin M, Barton NH. A comparison of 3 indirect methods for estimating average levels of gene flow[J]. Evolution, 1989, 43(7): 1349-1368.
    [24] Excoffier L, Lischer HEL. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows[J]. Mol Ecol Resour, 2010, 10(3): 564-567.
    [25] 邱道寿, 郑希龙, 蔡时可, 郑锦荣, 罗焕明, 张蕾, 邓瑞云, 李武, 刘晓津. 石斛SSR标记的开发及可转移性分析[J]. 植物科学学报, 2013, 31(5): 500-509.
    [26] Wright S. Evolution and the genetics of population[M]. Chicago: The University of Chicago Press, 1978: 205.
    [27] 周媛, 高磊, 汪志伟, 王艇. 分子标记技术在蕨类植物遗传多样性研究中的应用[J]. 武汉植物学研究, 2009, 27(6): 667-673.
    [28] Woodhead M, Russell J, Squirrell J, Hollingsworth M, Cardle L, Ramsay L, Gibby M, Powell W. Development of EST-SSRs from the alpine lady-fern, Athyrium distentifolium[J]. Mol Ecol Notes, 2003, 3(2): 287-290.
    [29] Soltis PS, Soltis DE. Genetic-variation within and among populations of ferns[J]. Am Fern J, 1990, 80(4): 161-172.
    [30] 潘丽芹, 季华, 陈龙清. 荷叶铁线蕨自然居群的遗传多样性研究[J]. 生物多样性, 2005, 13(2): 122-129.
    [31] 周厚高, 谢义林, 黎桦, 周琼, 张西丽, 王中仁, 周世良. 广西石灰岩地区蜈蚣蕨居群的遗传多样性研究[J]. 广西植物, 2002, 22(1): 67-70.
    [32] 王可青, 王中仁, 张方. 二倍体华中铁角蕨Asple-nium sarelii Hook.的等位酶遗传变异[J]. 遗传学报, 1998, 25(5): 454-463.
    [33] 王玲, 和兆荣. 基于ISSR的披针莲座蕨居群遗传多样性分析[J]. 云南大学学报: 自然科学版, 2008, 30(S2): 398-402.
  • 期刊类型引用(6)

    1. 童嘉琳,楼姝坪,徐云敏,朱祝军,何勇. 植物miR396及其靶基因进化、功能与应用研究进展. 核农学报. 2024(03): 472-480 . 百度学术
    2. 高明刚,李明,段高飞,王滕飞,冯晓健,许瑞瑞. 苹果GRF基因家族在非生物胁迫下的表达分析. 西北农业学报. 2024(01): 141-147 . 百度学术
    3. 孙龙飞,黄萍. 紫花苜蓿生长调节因子的全基因组鉴定及干旱胁迫下特征分析. 江苏农业科学. 2024(12): 45-52 . 百度学术
    4. 周文杰,张文瀚,贾玮,许自成,黄五星. 植物miRNA响应非生物胁迫研究进展. 植物学报. 2024(05): 810-833 . 百度学术
    5. 董家琦,吴淋慧,郑浩,张琼,钟彩虹. 高等植物性别分化的研究进展. 植物科学学报. 2024(05): 664-672 . 本站查看
    6. 赵思航,刘昊东,徐渴,张树华,赵勇,杨学举. 小麦中MIR160基因家族的生物信息学分析及靶基因鉴定. 分子植物育种. 2023(01): 27-35 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 6
出版历程
  • 收稿日期:  2015-05-28
  • 发布日期:  2015-12-27

目录

    /

    返回文章
    返回