高级检索+

元江干热河谷木质藤本的多样性及其与宿主树木的关系

吴怀栋, 刘奇, 谭运洪, 张教林

吴怀栋, 刘奇, 谭运洪, 张教林. 元江干热河谷木质藤本的多样性及其与宿主树木的关系[J]. 植物科学学报, 2016, 34(4): 547-554. DOI: 10.11913/PSJ.2095-0837.2016.40547
引用本文: 吴怀栋, 刘奇, 谭运洪, 张教林. 元江干热河谷木质藤本的多样性及其与宿主树木的关系[J]. 植物科学学报, 2016, 34(4): 547-554. DOI: 10.11913/PSJ.2095-0837.2016.40547
WU Huai-Dong, LIU Qi, TAN Yun-Hong, ZHANG Jiao-Lin. Liana Diversity and Its Relationship with Host Trees in the Yuanjiang Dry-Hot Valley, Yunnan, China[J]. Plant Science Journal, 2016, 34(4): 547-554. DOI: 10.11913/PSJ.2095-0837.2016.40547
Citation: WU Huai-Dong, LIU Qi, TAN Yun-Hong, ZHANG Jiao-Lin. Liana Diversity and Its Relationship with Host Trees in the Yuanjiang Dry-Hot Valley, Yunnan, China[J]. Plant Science Journal, 2016, 34(4): 547-554. DOI: 10.11913/PSJ.2095-0837.2016.40547
吴怀栋, 刘奇, 谭运洪, 张教林. 元江干热河谷木质藤本的多样性及其与宿主树木的关系[J]. 植物科学学报, 2016, 34(4): 547-554. CSTR: 32231.14.PSJ.2095-0837.2016.40547
引用本文: 吴怀栋, 刘奇, 谭运洪, 张教林. 元江干热河谷木质藤本的多样性及其与宿主树木的关系[J]. 植物科学学报, 2016, 34(4): 547-554. CSTR: 32231.14.PSJ.2095-0837.2016.40547
WU Huai-Dong, LIU Qi, TAN Yun-Hong, ZHANG Jiao-Lin. Liana Diversity and Its Relationship with Host Trees in the Yuanjiang Dry-Hot Valley, Yunnan, China[J]. Plant Science Journal, 2016, 34(4): 547-554. CSTR: 32231.14.PSJ.2095-0837.2016.40547
Citation: WU Huai-Dong, LIU Qi, TAN Yun-Hong, ZHANG Jiao-Lin. Liana Diversity and Its Relationship with Host Trees in the Yuanjiang Dry-Hot Valley, Yunnan, China[J]. Plant Science Journal, 2016, 34(4): 547-554. CSTR: 32231.14.PSJ.2095-0837.2016.40547

元江干热河谷木质藤本的多样性及其与宿主树木的关系

基金项目: 

国家自然科学基金项目(31270453,31470470)。

详细信息
    作者简介:

    吴怀栋(1989-),男,硕士研究生,研究方向为木质藤本生态学研究(E-mail:wuhd12@163.com)。

    通讯作者:

    张教林,E-mail:zjl@xtbg.org.cn

  • 中图分类号: Q948

Liana Diversity and Its Relationship with Host Trees in the Yuanjiang Dry-Hot Valley, Yunnan, China

Funds: 

This work was supported by grants from the National Natural Science Foundation of China(31270453, 31470470).

  • 摘要: 木质藤本是森林生态系统的重要组分。本研究在元江干热河谷地区随机设置了30个20 m×20 m的样方,调查样方中胸径≥0.5 cm的木质藤本多样性及其与宿主树木之间的关系。结果显示:30个样方中记录到胸径≥0.5 cm的木质藤本植物共945株(隶属于22种20属11科),其中,豆科木质藤本的丰富度和多度最高;胸径≤2 cm的木质藤本占个体总数的63.7%;茎缠绕类木质藤本的个体数最多。样方中胸径≥5 cm的树木共有1060株(隶属于38种31属16科),36.0%的树木上至少附藤1株。不同径级和不同树皮粗糙度的树木被木质藤本侵扰的百分比之间存在极显著差异(P<0.001)。随着宿主树木平均枝下高的增加,附藤率呈下降趋势。76.5%的木质藤本选择离其根生长点最近的树木进行攀援。表明元江干热河谷中的木质藤本以小径级占优势,树木胸径、枝下高、树皮粗糙度和木质藤本根生长点到树木的距离是影响木质藤本侵扰树木的重要因素,支持木质藤本对宿主树木的侵扰具有选择性的假说。研究结果对中国西南干热河谷退化植被的恢复与物种多样性保护具有重要意义。
    Abstract: Lianas constitute an important component of forest ecosystems. In this study, we investigated liana diversity and their relationship with host trees in 30 plots (20 m×20 m) set in a dry-hot savanna valley of Yuanjiang county, Yunnan Province, Southwest China. In total, 945 liana individuals with diameters at breast height (DBH) ≥0.5 cm were recorded, representing 22 species in 20 genera and 11 families. Legume lianas were the most abundant. Stem twining was the most predominant climbing mechanism. The DBH of 63.7% of liana individuals was ≤2 cm. We also recorded 1060 host trees with DBH ≥5 cm, belonging to 38 species in 31 genera and 16 families, 36.0% of which were climbed by at least one liana. There were significant differences in the percentage of trees infested by lianas among different tree size and bark roughness (P<0.001). With the increase in average branch-free bole height, the percentage of tree infestation by lianas decreased. In addition, 76.5% of lianas selected the nearest tree to climb. These results indicated that in the Yuanjiang dry-hot valley, lianas with small DBH were dominant. Tree size, branch-free bole height, bark roughness, and distance from liana rooting point to the closest host tree were the most important factors influencing host tree selection, supporting the hypothesis that lianas exhibited host preference. These findings are important for the rehabilitation of degraded ecosystems and biodiversity conservation in the dry-hot valleys of southwestern China.
  • [1]

    Schnitzer SA, Bongers F. The ecology of lianas and their role in forests[J]. Trends Ecol Evol, 2002, 17(5):223-230.

    [2]

    Schnitzer SA. A mechanistic explanation for global patterns of liana abundance and distribution[J]. Am Nat, 2005, 166(2):262-276.

    [3]

    Schnitzer SA, Bongers F. Increasing liana abundance and biomass in tropical forests:emerging patterns and putative mechanisms[J]. Ecol Lett, 2011, 14(4):397-406.

    [4]

    Dunn JC, Asensio N, Arroyo-Rodriguez V, Schnitzer S, Cristóbal-Azkarate J. The ranging costs of a fallback food:liana consumption supplements diet but increases foraging effort in howler monkeys[J]. Biotropica, 2012, 44(5):705-714.

    [5] 陈亚军,曹坤芳,蔡志全. 两种光强下木质藤本和树木幼苗的竞争关系[J]. 植物生态学报, 2008, 32(3):639-647.

    Chen YJ, Cao KF, Cai ZQ. Above- and below-ground competition between seedlings of lianas and trees under two light irradiances[J]. Acta Phytoecologica Sinica, 2008, 32(3):639-647.

    [6]

    Van der Heijden GMF, Phillips OL. Environmental effects on Neotropical liana species richness[J]. J Biogeogr, 2009, 36(8):1561-1572.

    [7]

    Schnitzer SA, Carson WP. Lianas suppress tree regeneration and diversity in treefall gaps[J]. Ecol Lett, 2010, 13(7):849-857.

    [8]

    Carsten LD, Juola FA, Male TD, Cherry S. Host associations of lianas in a south-east Queensland rain forest[J]. J Trop Ecol, 2002, 18(1):107-120.

    [9]

    Toledo-Aceves T, Swaine MD. Above- and below-ground competition between the liana Acacia kamerunensis and tree seedlings in contrasting light environments[J]. Plant Ecol, 2008, 196(2):233-244.

    [10]

    Van der Sande MP, Lourens, Schnitzer S, Markesteijn L. Are lianas more drought-tolerant than trees? A test for the role of hydraulic architecture and other stem and leaf traits[J]. Oecologia, 2013, 172(4):961-972.

    [11]

    Laurance WF, Andrade AS, Magrach A, Camargo JLC, Valsko JJ, Campbell M, Fearnside PM, Edwards W, Lovejoy TE, Laurance SG. Long-term changes in liana abundance and forest dynamics in undisturbed Amazonian forests[J]. Ecology, 2014, 95(6):1604-1611.

    [12]

    Addo-Fordjour P, Rahmad ZB, Shahrul AMS. Impacts of forest management on community assemblage and carbon stock of lianas in a tropical lowland forest, Malaysia[J]. Trop Conser Sci, 2014, 7(2):244-259.

    [13]

    Martinez-Izquierdo L, Garcia MM, Powers JS, Schnitzer, SA. Lianas suppress seedling growth and survival of 14 tree species in a Panamanian tropical forest[J]. Ecology, 2016, 97(1):215-224

    [14] 曲仲湘. 我国南方森林中缠绕藤本植物的初步观察[J]. 植物生态学与地植物学丛刊, 1964, 2(1):1-9.

    Qu ZX. Preliminary observation of twisted liana in southern forest of China[J]. Acta Phytoecology Geobotania Sinica, 1964, 2(1):1-9.

    [15] 蔡永立,宋永昌. 中国亚热带东部藤本植物的多样性[J]. 武汉植物学研究, 2000, 18(5):390-396.

    Cai YL, Song YC. Diversity of vines in subtropical zone of east China[J]. Journal of Wuhan Botanical Research, 2000, 18(5):390-396.

    [16]

    Zhu H. Species composition and diversity of lianas in tropical forests of southern Yunnan (Xishuangbanna), south-western China[J]. J Trop Forest Sci, 2008, 20(2):111-122.

    [17] 丁凌子,陈亚军,张教林. 热带雨林木质藤本植物叶片性状及其关联[J]. 植物科学学报,2014, 32(4):362-370.

    Ding LZ, Chen YJ, Zhang JL. Leaf traits and their associations among liana species in tropical rainforest[J]. Plant Science Journal, 2014, 32(4):362-370.

    [18] 袁春明,刘文耀,杨国平,李小双. 哀牢山湿性常绿阔叶林木质藤本植物的物种多样性及其与支柱木的关系[J]. 林业科学, 2010, 46(1):15-22.

    Yuan CM, Liu WY, Yang GP, Li XS. Liana species diversity and relationships with its host trees in the moist evergreen broad-leaved forest in the Ailao Mountains, southwest China[J]. Scientia Silvae Sinicae, 2010, 46(1):15-22.

    [19] 刘晋仙,陶建平,王玉平,何泽,乌玉娜,郭庆学. 海南霸王岭山地原始林与伐后林中木质藤本与支持木的多样性及其相互关系[J]. 林业科学, 2012, 48(5):15-19.

    Liu JX, Tao JP, Wang YP, He Z, Wu YN, Guo QX. Species diversity and tree-liana relationship in the tropical montane primary forest and post logged forest of Bawangling, Hainan Island, China[J]. Scientia Silvae Sinicae, 2012, 48(5):15-19.

    [20]

    Featherly HT. The effect of grapevines on trees[J]. Oklahoma Acad Sci Proc, 1941, 21:61-62.

    [21]

    Malizia A, Grau HR. Liana-host tree associations in a subtropical montane forest of north-western Argentina[J]. J Trop Ecol, 2006, 22(3):331-339.

    [22]

    Talley SM, Lawton RO, Setzer WN. Host preferences of Rhus radicans (Anacardiaceae) in a southern deciduous hardwood forest[J]. Ecology, 1996, 77(4):1271-1276.

    [23]

    Campbell EJF, Newbery DM. Ecological relationships between lianas and trees in lowland rain forest in Sabah, East Malaysia[J]. J Trop Ecol, 1993, 9(4):469-490.

    [24]

    Putz FE. How trees avoid and shed lianas[J]. Biotropica, 1984, 16(1):19-23.

    [25]

    Roeder M, Slik JWF, Harrison RD, Paudel E, Tomlinson KW. Proximity to the host is an important characteristic for selection of the first support in lianas[J]. J Veg Sci, 2015, 26(6):1054-1060.

    [26]

    Putz FE. Nature history of lianas and their influence on tropical[D]. Cornell University, N.Y. 1982.

    [27] 金振洲, 欧小昆. 元江、怒江、金沙江、澜沧江干热河谷植被[M].昆明:云南科技出版社, 2000:1-13.

    Jin ZZ, Ou XK. Yuanjiang, Nujiang, Jinshajiang, Lanchangjiang Vegetation of Dry-hot Valley[M]. Kunming:Yunnan Science and Technology Press, 2000:1-13.

    [28] 张晓凯,杜凡,陈建设,周丹. 云南怒江河谷种子植物区系的特有现象[J]. 植物科学学报, 2015, 33(3):302-310

    . Zhang XK, Du F, Chen JS, Zhou D. Endemism in the flora of seed plants in Nu river valley of Yunnan Province[J]. Plant Science Journal, 2015, 33(3):302-310

    [29]

    Zhang SB, Zhang JL, Cao KF. Difference in the photosynthetic efficiency and photorespiration of co-occurring Euphorbiaceae liana and tree in a Chinese savanna[J]. Photosynthetica, 2016, http//dx.doi.org/10.1007/s11099-016-0188-8.

    [30]

    Gerwing JJ, Schnitzer SA, Burnham RJ, Bongers F, Chave J, DeWalt SJ, Ewango CEN, Foster R, Kenfack D, MartÍnez-Ramos M, Parren M, Parthasarathy N, PÉrez-Salicrup DR, Putz FE, Thomas DW. A standard protocol for liana censuses[J]. Biotropica, 2006, 38(2):256-261.

    [31]

    Schnitzer SA, Rutishauser S, Aguilar S. Supplemental protocol for liana censuses[J]. For Ecol Manag, 2008, 255(3-4):1044-1049.

    [32]

    Wright DD, Jessen JH, Burke P, de Silva Garza HG. Tree and liana enumeration and diversity on a one-hectare plot in Papua New Guinea[J]. Biotropica, 1997, 29(3):250-260.

    [33]

    Addo-Fordjour P, Anning AK, Atakora EA, Agyei PS. Diversity and distribution of climbing plants in a semi-deciduous rain forest, KUNST Botanic Garden, Ghana[J]. Int J Bot, 2008, 4(2):186-195.

    [34] 陈亚军, 文斌. 滇南勐宋热带山地雨林木质藤本多样性研究[J]. 广西植物,2008, 28(1):67-72.

    Chen YJ. Wen B. Liana diversity and abundance of atropical montane rainforest in Mengsong,southern Yunnan, China[J]. Guihaia, 2008, 28:67-72.

    [35]

    Chalmers AC. Turner JC. Climbing plants in relation to their supports in a stand of dry rainforest in the Hunter valley, New South Wales[J]. Proc Linn Soc N S W, 1994, 114(2):73-90.

    [36]

    Van der Heijden GMF, Phillips OL. What controls liana success in Neotropical forests?[J]. Global Ecol Biogeogr, 2008, 17(3):372-383.

    [37]

    Ewango CE, Bongers F, Makana JR, Poorter L, Sosef MS. Structure and composition of the liana assemblage of a mixed rain forest in the Congo Basin[J]. Plant Ecol Evol, 2015, 148(1):29-42.

    [38]

    Chen YJ, Cao KF, Schnitzer SA, Fan ZX, Zhang JL, Bongers F. Water-use advantage for lianas over trees in tropical seasonal forests[J]. New Phytol, 2014, 205(1):128-136.

    [39]

    Nabe-Nielsen J. Diversity and distribution of lianas in a neotropical rain forest, Yasuni National Park, Ecuador[J]. J Trop Ecol, 2001, 17(1):1-19.

    [40]

    Sfair JC, Rochelle ALC, Rezende AA, van Melis J, Weiser VDL, Martins FR. Nested liana-tree network in three distinct neotropical vegetation formations[J]. Perspect Plant Ecol, 2010, 12(4):277-281.

  • 期刊类型引用(6)

    1. 童嘉琳,楼姝坪,徐云敏,朱祝军,何勇. 植物miR396及其靶基因进化、功能与应用研究进展. 核农学报. 2024(03): 472-480 . 百度学术
    2. 高明刚,李明,段高飞,王滕飞,冯晓健,许瑞瑞. 苹果GRF基因家族在非生物胁迫下的表达分析. 西北农业学报. 2024(01): 141-147 . 百度学术
    3. 孙龙飞,黄萍. 紫花苜蓿生长调节因子的全基因组鉴定及干旱胁迫下特征分析. 江苏农业科学. 2024(12): 45-52 . 百度学术
    4. 周文杰,张文瀚,贾玮,许自成,黄五星. 植物miRNA响应非生物胁迫研究进展. 植物学报. 2024(05): 810-833 . 百度学术
    5. 董家琦,吴淋慧,郑浩,张琼,钟彩虹. 高等植物性别分化的研究进展. 植物科学学报. 2024(05): 664-672 . 本站查看
    6. 赵思航,刘昊东,徐渴,张树华,赵勇,杨学举. 小麦中MIR160基因家族的生物信息学分析及靶基因鉴定. 分子植物育种. 2023(01): 27-35 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  1182
  • HTML全文浏览量:  2
  • PDF下载量:  1119
  • 被引次数: 6
出版历程
  • 收稿日期:  2016-03-09
  • 修回日期:  2016-03-30
  • 网络出版日期:  2022-10-31
  • 发布日期:  2016-08-27

目录

    /

    返回文章
    返回