高级检索+

植物细胞质雄性不育及育性恢复研究进展

郝园园, 舒黄英, 蔡庆泽, 王振, 胡家琦, 朱国鹏, 成善汉, 周媛, 汪志伟

郝园园, 舒黄英, 蔡庆泽, 王振, 胡家琦, 朱国鹏, 成善汉, 周媛, 汪志伟. 植物细胞质雄性不育及育性恢复研究进展[J]. 植物科学学报, 2017, 35(6): 925-931. DOI: 10.11913/PSJ.2095-0837.2017.60925
引用本文: 郝园园, 舒黄英, 蔡庆泽, 王振, 胡家琦, 朱国鹏, 成善汉, 周媛, 汪志伟. 植物细胞质雄性不育及育性恢复研究进展[J]. 植物科学学报, 2017, 35(6): 925-931. DOI: 10.11913/PSJ.2095-0837.2017.60925
Hao Yuan-Yuan, Shu Huang-Ying, Cai Qing-Ze, Wang Zhen, Hu Jia-Qi, Zhu Guo-Peng, Cheng Shan-Han, Zhou Yuan, Wang Zhi-Wei. Recent advances in plant cytoplasmic male sterility and fertility restoration[J]. Plant Science Journal, 2017, 35(6): 925-931. DOI: 10.11913/PSJ.2095-0837.2017.60925
Citation: Hao Yuan-Yuan, Shu Huang-Ying, Cai Qing-Ze, Wang Zhen, Hu Jia-Qi, Zhu Guo-Peng, Cheng Shan-Han, Zhou Yuan, Wang Zhi-Wei. Recent advances in plant cytoplasmic male sterility and fertility restoration[J]. Plant Science Journal, 2017, 35(6): 925-931. DOI: 10.11913/PSJ.2095-0837.2017.60925
郝园园, 舒黄英, 蔡庆泽, 王振, 胡家琦, 朱国鹏, 成善汉, 周媛, 汪志伟. 植物细胞质雄性不育及育性恢复研究进展[J]. 植物科学学报, 2017, 35(6): 925-931. CSTR: 32231.14.PSJ.2095-0837.2017.60925
引用本文: 郝园园, 舒黄英, 蔡庆泽, 王振, 胡家琦, 朱国鹏, 成善汉, 周媛, 汪志伟. 植物细胞质雄性不育及育性恢复研究进展[J]. 植物科学学报, 2017, 35(6): 925-931. CSTR: 32231.14.PSJ.2095-0837.2017.60925
Hao Yuan-Yuan, Shu Huang-Ying, Cai Qing-Ze, Wang Zhen, Hu Jia-Qi, Zhu Guo-Peng, Cheng Shan-Han, Zhou Yuan, Wang Zhi-Wei. Recent advances in plant cytoplasmic male sterility and fertility restoration[J]. Plant Science Journal, 2017, 35(6): 925-931. CSTR: 32231.14.PSJ.2095-0837.2017.60925
Citation: Hao Yuan-Yuan, Shu Huang-Ying, Cai Qing-Ze, Wang Zhen, Hu Jia-Qi, Zhu Guo-Peng, Cheng Shan-Han, Zhou Yuan, Wang Zhi-Wei. Recent advances in plant cytoplasmic male sterility and fertility restoration[J]. Plant Science Journal, 2017, 35(6): 925-931. CSTR: 32231.14.PSJ.2095-0837.2017.60925

植物细胞质雄性不育及育性恢复研究进展

基金项目: 

国家自然科学基金项目(31470412);海南大学高层次人才启动基金(KYQD1656)。

详细信息
    作者简介:

    郝园园(1992-),女,硕士研究生,主要从事植物发育生物学研究(E-mail:627968306@qq.com)。

    通讯作者:

    汪志伟,E-mail:zwwang22@163.com,wangzhiwei@hainu.edu.cn

  • 中图分类号: Q945.4

Recent advances in plant cytoplasmic male sterility and fertility restoration

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31470412) and the Startup Funding from Hainan University (KYQD1656).

  • 摘要: 植物细胞质雄性不育是一种广泛存在于高等植物中的母性遗传性状。细胞质雄性不育不仅为研究核质互作提供了良好材料,同时也是植物杂种优势利用的重要基础,其分子机理是目前研究的重点。多种研究证据表明,线粒体基因与细胞质雄性不育密切相关。随着分子生物学和分子遗传学的不断发展,许多植物的恢复基因已经被定位和克隆,进一步阐明了植物细胞质雄性不育和育性恢复的分子机理。本文综述了近几年植物中细胞质雄性不育和育性恢复相关基因的研究进展,并探讨了细胞质雄性不育/育性恢复系统在育种方面的应用。
    Abstract: Cytoplasmic male sterility (CMS) is a maternal genetic trait widely found in higher plants. CMS is not only a favorable material for studying the interaction between mitochondrial and nuclear genes, but also an important basis for the utilization of plant heterosis, with its molecular mechanism the focus of current research. Evidence suggests that mitochondrial genes are closely related to CMS. With the continuous development of molecular biology and genetics, many plant fertility restoration (Rf) genes have been mapped and cloned, further elucidating the molecular mechanisms of plant CMS and Rf. This review summarizes the recent research advances in CMS and Rf-related genes in plants, and explores the application of the CMS/Rf system in breeding.
  • [1] 汪志伟. 萝卜细胞质雄性不育胞质和核基因的分子标记的开发及其分子特征[D]. 武汉:华中农业大学, 2006.
    [2] 马艳青, 邹学校. 蔬菜雄性不育研究与应用进展[J]. 作物研究, 2004(S1):414-420.
    [3]

    Chen L, Liu YG. Male sterility and fertility restoration in crops[J]. Annu Rev Plant Biol, 2014, 65(1):579-606.

    [4]

    Hu J, Huang WC, Huang Q, Qin XJ, Yu CC, Wang LL, Li SQ, Zhu RS, Zhu YG. Mitochondria and cytoplasmic male sterility in plants[J]. Mitochondrion, 2014, 19:282-288.

    [5]

    Chase CD. Cytoplasmic male sterility:a window to the world of plant mitochondrial-nuclear interactions[J]. Trends Genet, 2007, 23(2):81-90.

    [6]

    Maréchal A, Brisson N. Recombination and the maintenance of plant organelle genome stability[J]. New Phytol, 2010, 186(2):299-317.

    [7]

    Luo D, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C, Zhang Q, Bai M, Yao N. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice[J]. Nat Genet, 2013, 45(5):573-577.

    [8]

    Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D. Cytoplasmic male sterility of rice with Boro Ⅱ cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing[J]. Plant Cell, 2006, 18(3):676-687.

    [9]

    Kazama T, Nakamura T, Watanabe M, Sugita M, Toriyama K. Suppression mechanism of mitochondrial ORF79 accumulation by Rf1 protein in BT-type cytoplasmic male sterile rice[J]. Plant J, 2008, 55(4):619-628.

    [10]

    Yamamoto MP, Shinada H, Onodera Y, Komaki C, Mikami T, Kubo T. A male sterility-associated mitochondrial protein in wild beets causes pollen disruption in transgenic plants[J]. Plant J, 2008, 54(6):1027-1036.

    [11]

    Nizampatnam NR, Doodhi H, Narasimhan YK, Mulpuri S, Viswanathaswamy DK. Expression of sunflower cytoplasmic male sterility-associated open reading frame, orfH522 induces male sterility in transgenic tobacco plants[J]. Planta, 2009, 229(4):987-1001.

    [12]

    Uyttewaal M, Arnal N, Quadrado M, Martin-Canadell A, Vrielynck N, Hiard S, Gherbi H, Bendahmane A, Budar F, Mireau H. Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility[J]. Plant Cell, 2008, 20(12):3331-3345.

    [13]

    Das S, Sen S, Chakraborty A, Chakraborti P, Maiti MK, Basu A, Basu D, Sen SK. An unedited 1.1 kb mitochondrial orfB gene transcript in the wild abortive cytoplasmic male sterility (WA-CMS) system of Oryza sativa L. subsp. indica[J]. BMC Plant Biol, 2010, 10(1):39.

    [14]

    Kumar P, Vasupalli N, Srinivasan R, Bhat SR. An evolutionarily conserved mitochondrial orf108 is associated with cytoplasmic male sterility in different alloplasmic lines of Brassica juncea and induces male sterility in transgenic Arabidopsis thaliana[J]. J Exp Bot, 2012, 63(8):2921-2932.

    [15]

    Hammani K, Giege P. RNA metabolism in plant mitochondria[J]. Trends Plant Sci, 2014, 19(6):380-389.

    [16]

    Takenaka M, Zehrmann A, Verbitskiy D, Härtel B, Brennicke A. RNA editing in plants and its evolution[J]. Annu Rev Genet, 2013, 47:335-352.

    [17]

    Ichinose M, Sugita M. RNA editing and its molecular mechanism in plant organelles[J]. Genes, 2016, 8(1):5.

    [18]

    Gillman JD, Bentolila S, Hanson MR. The petunia restorer of fertility protein is part of a large mitochondrial complex that interacts with transcripts of the CMS-associated locus[J]. Plant J, 2007, 49(2):217-227.

    [19]

    Fujii S, Toriyama K, Nasrallah JB. Suppressed expression of "RETROGRADE-REGULATED MALE STERILITY" restores pollen fertility in cytoplasmic male sterile rice plants[J]. Proc Natl Acad Sci USA, 2009, 106(23):9513-9518.

    [20]

    Wang K, Gao F, Ji Y, Liu Y, Dan Z, Yang P, Zhu Y, Li S. ORFH79 impairs mitochondrial function via interaction with a subunit of electron transport chain complexⅢ in Honglian cytoplasmic male sterile rice[J]. New Phytol, 2013, 198(2):408-418.

    [21]

    Ding X, Chen Q, Bao C, Ai A, Zhou Y, Li S, Xie H, Zhu Y, Cai Y, Peng X. Expression of a mitochondrial gene orfH79 from CMS-Honglian rice inhibits Escherichia coli growth via deficient oxygen consumption[J]. Springerplus, 2016, 5(1):1125.

    [22]

    Dewey RE, Levings CS, Timothy DH. Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm[J]. Cell, 1986, 44(3):439-449.

    [23] 赵荣敏, 王迎春, 范云六. 油菜波里马胞质雄性不育相关线粒体基因orf224在大肠杆菌中的克隆和表达[J]. 农业生物技术学报, 1996(1):15-22.

    Zhao RM, Wang YC, Fan YL. The cloning and expression of orf224 gene associated with Polima cytoplasmic male sterility of Brassica napus in E. coli[J]. Journal of Agricultural Biotechnology, 1996(1):15-22.

    [24]

    Duroc Y, Gaillard C, Hiard S, Defrance MC, Pelletier G, Budar F. Biochemical and functional characterization of ORF138, a mitochondrial protein responsible for Ogura cytoplasmic male sterility in Brassiceae[J]. Biochimie, 2005, 87(12):1089-1100.

    [25]

    Liu F, Cui X, Horner HT, Weiner H, Schnable PS. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize[J]. Plant Cell, 2001, 13(5):1063-1078.

    [26]

    Manavski N, Guyon V, Meurer J, Wienand U, Brettschneider R. An essential pentatricopeptide repeat protein facilitates 5' maturation and translation initiation of rps3 mRNA in maize mitochondria[J]. Plant Cell, 2012, 24(7):3087-3105.

    [27]

    Fujii S, Sato N, Shikanai T. Mutagenesis of individual pentatricopeptide repeat motifs affects RNA binding activity and reveals functional partitioning of Arabidopsis PROTON GRADIENT REGULATION3[J]. Plant Cell, 2013, 25(8):3079-3088.

    [28]

    Ke J, Chen RZ, Ban T, Zhou XE, Gu X, Tan ME, Chen C, Kang Y, Brunzelle JS, Zhu JK. Structural basis for RNA recognition by a dimeric PPR-protein complex[J]. Nat Struct Mol Biol, 2013, 20(12):1377-1382.

    [29]

    Liu YJ, Xiu ZH, Meeley R, Tan BC. Empty pericarp5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize[J]. Plant Cell, 2013, 25(3):868-883.

    [30]

    Yin P, Li Q, Yan C, Liu Y, Liu J, Yu F, Wang Z, Long J, He J, Wang HW. Structural basis for the modular recognition of single-stranded RNA by PPR proteins[J]. Nature, 2013, 504(7478):168-171.

    [31]

    Barkan A, Small I. Pentatricopeptide repeat proteins in plants[J]. Annu Rev Plant Biol, 2014, 65(1):451-442.

    [32]

    Bentolila S, Alfonso AA, Hanson MR. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants[J]. Proc Natl Acad Sci USA, 2002, 99(16):10887-10892.

    [33]

    Brown GG, Formanová N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats[J]. Plant J, 2003, 35(2):262-272.

    [34]

    Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family[J]. EMBO Reports, 2003, 4(6):588-594.

    [35]

    Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura J. Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish[J]. Plant J, 2003, 34(4):407-415.

    [36]

    Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.)[J]. Plant J, 2004, 37(3):315-325.

    [37]

    Klein R, Klein P, Mullet J, Minx P, Rooney W, Schertz K. Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not pre-sent in the colinear region of rice chromosome 12[J]. Theor Appl Genet, 2005, 111(6):994-1012.

    [38]

    Brown GG, Formanová N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats[J]. Plant J, 2003, 35(2):262-272.

    [39]

    Kazama T, Toriyama K. Whole mitochondrial genome sequencing and re-examination of a cytoplasmic male sterility-associated gene in Boro-Taichung-type cytoplasmic male sterile rice[J]. PloS One, 2016, 11(7):e0159379.

    [40]

    Zhang H, Che J, Ge Y, Pei Y, Zhang L, Liu Q, Gu M, Tang S. Ability of Rf5 and Rf6 to restore fertility of chinsu-rah BoroⅡ -type cytoplasmic male sterile Oryza sativa (ssp. japonica) lines[J]. Rice, 2017, 10(1):2.

    [41]

    Itabashi E, Iwata N, Fujii S, Kazama T, Toriyama K. The fertility restorer gene, Rf2, for Lead Rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein[J]. Plant J, 2011, 65(3):359-367.

    [42]

    Hu J, Wang K, Huang W, Liu G, Gao Y, Wang J, Huang Q, Ji Y, Qin X, Wan L. The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162[J]. Plant Cell, 2012, 24(1):109-122.

    [43]

    Huang W, Yu C, Hu J, Wang L, Dan Z, Zhou W, He C, Zeng Y, Yao G, Qi J, Zhang Z, Zhu R, Chen X, Zhu Y. Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility[J]. Proc Natl Acad Sci USA, 2015, 112(48):14984-14989.

    [44]

    Igarashi K, Kazama T, Toriyama K. A gene encoding pentatricopeptide repeat protein partially restores fertility in RT98-type cytoplasmic male sterile rice[J]. Plant Cell Physiol, 2016, 57(10):2187-2193.

    [45]

    Kazama T, Toriyama K. A fertility restorer gene, Rf4, widely used for hybrid rice breeding encodes a pentatricopeptide repeat protein[J]. Rice, 2014, 7:28.

    [46]

    Pranathi K, Viraktamath BC, Neeraja CN, Balachandran SM, Prasad ASH, Rao PK,et al. Development and validation of candidate gene-specific markers for the major fertility restorer genes, Rf4 and Rf3 in rice[J]. Mol Bree-ding, 2016, 36(10):145.

    [47]

    Fujii S, Yamada M, Fujita M, Itabashi E, Hamada K, Yano K, Kurata N, Toriyama K. Cytoplasmic-nuclear geno-mic barriers in rice pollen development revealed by compa-rison of global gene expression profiles among five independent cytoplasmic male sterile lines[J]. Plant Cell Physiol, 2010, 51(4):610-620.

    [48]

    Janska H, Sarria R, Woloszynska M, Arrieta-Montiel M, Mackenzie SA. Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility[J]. Plant Cell, 1998, 10(7):1163.

    [49]

    Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice[J]. Proc Natl Acad Sci USA, 2012, 109(7):2654-2659.

    [50]

    Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, Lu S, Li F, Zhu L, Liu Z. Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA[J]. Cell Res, 2012, 22(4):649-660.

    [51]

    Hu JH, Chen XJ, Zhang HY, Ding Y. Genome-wide analysis of DNA methylation in photoperiod-and thermo-sensitive male sterile rice Peiai 64S[J]. BMC Genomics, 2015, 16:1-14.

    [52]

    Fan Y, Yang J, Mathioni SM, Yu J, Shen J, Yang X,et al. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice[J]. Proc Natl Acad Sci USA, 2016, 113(52):15144-15149.

    [53]

    Puchta H. Applying CRISPR/Cas for genome engineering in plants:the best is yet to come[J]. Curr Opin Plant Biol, 2016, 36:1-8.

    [54]

    Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen LL. CRISPR-P 2.0:an improved CRISPR-Cas9 tool for genome editing in plants[J]. Mol Plant, 2017, 10(3):530-532.

  • 期刊类型引用(3)

    1. 王凯,陶兴梅,李小琴,谯祖勤,刘朝,张永福. 三叶木通叶片解剖结构和生理特征对酸雨胁迫的响应和钛的缓解效应. 热带亚热带植物学报. 2025(01): 15-24 . 百度学术
    2. 刘伶利,李学松,刘争,乐洪志,杨怀,琚煜熙,方若龙,张涛. 模拟酸雨对青钱柳幼苗的生理作用. 信阳师范学院学报(自然科学版). 2021(03): 452-456 . 百度学术
    3. 荣立苹,张佳奇,赵东辉,陈家硕,刘继生,周燕,高玉福. 模拟酸雨对元宝枫幼苗生理及叶绿素荧光参数的影响. 经济林研究. 2019(03): 44-51 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  981
  • HTML全文浏览量:  2
  • PDF下载量:  1083
  • 被引次数: 3
出版历程
  • 收稿日期:  2017-05-14
  • 网络出版日期:  2022-10-31
  • 发布日期:  2017-12-27

目录

    /

    返回文章
    返回