高级检索+

植物硼钙效应及其在细胞壁中互作机制的研究

刘亚林, 吴秀文, 闫磊, 杜晨晴, 姜存仓

刘亚林, 吴秀文, 闫磊, 杜晨晴, 姜存仓. 植物硼钙效应及其在细胞壁中互作机制的研究[J]. 植物科学学报, 2018, 36(5): 767-773. DOI: 10.11913/PSJ.2095-0837.2018.50767
引用本文: 刘亚林, 吴秀文, 闫磊, 杜晨晴, 姜存仓. 植物硼钙效应及其在细胞壁中互作机制的研究[J]. 植物科学学报, 2018, 36(5): 767-773. DOI: 10.11913/PSJ.2095-0837.2018.50767
Liu Ya-Lin, Wu Xiu-Wen, Yan Lei, Du Chen-Qing, Jiang Cun-Cang. Research progress on the effect of boron and calcium on plants and the interaction mechanism in the cell wall[J]. Plant Science Journal, 2018, 36(5): 767-773. DOI: 10.11913/PSJ.2095-0837.2018.50767
Citation: Liu Ya-Lin, Wu Xiu-Wen, Yan Lei, Du Chen-Qing, Jiang Cun-Cang. Research progress on the effect of boron and calcium on plants and the interaction mechanism in the cell wall[J]. Plant Science Journal, 2018, 36(5): 767-773. DOI: 10.11913/PSJ.2095-0837.2018.50767
刘亚林, 吴秀文, 闫磊, 杜晨晴, 姜存仓. 植物硼钙效应及其在细胞壁中互作机制的研究[J]. 植物科学学报, 2018, 36(5): 767-773. CSTR: 32231.14.PSJ.2095-0837.2018.50767
引用本文: 刘亚林, 吴秀文, 闫磊, 杜晨晴, 姜存仓. 植物硼钙效应及其在细胞壁中互作机制的研究[J]. 植物科学学报, 2018, 36(5): 767-773. CSTR: 32231.14.PSJ.2095-0837.2018.50767
Liu Ya-Lin, Wu Xiu-Wen, Yan Lei, Du Chen-Qing, Jiang Cun-Cang. Research progress on the effect of boron and calcium on plants and the interaction mechanism in the cell wall[J]. Plant Science Journal, 2018, 36(5): 767-773. CSTR: 32231.14.PSJ.2095-0837.2018.50767
Citation: Liu Ya-Lin, Wu Xiu-Wen, Yan Lei, Du Chen-Qing, Jiang Cun-Cang. Research progress on the effect of boron and calcium on plants and the interaction mechanism in the cell wall[J]. Plant Science Journal, 2018, 36(5): 767-773. CSTR: 32231.14.PSJ.2095-0837.2018.50767

植物硼钙效应及其在细胞壁中互作机制的研究

基金项目: 

国家自然科学基金项目(41271320);中央高校基本科研业务费专项资金(2017PY055)。

详细信息
    作者简介:

    刘亚林(1994-),男,硕士研究生,研究方向为植物营养与施肥(E-mail:liuyalin@webmail.hzau.edu.cn)。

    通讯作者:

    姜存仓,E-mail:jcc2000@mail.hzau.edu.cn

  • 中图分类号: Q945.1

Research progress on the effect of boron and calcium on plants and the interaction mechanism in the cell wall

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (41271320) and Fundamental Research Funds for the Central Universities (2017PY055).

  • 摘要: 植物营养元素之间存在着相互作用,其作用机理一直是相关学者研究的重点。硼是植物必需的营养元素,近年来,有关硼与其它元素之间的相关性研究已取得了一系列成果。本文综述了国内外关于植物在不同硼、钙条件下的形态发育、代谢组学、细胞壁果胶网络中的交联机制等方面的研究进展,并对如何充分利用代谢组学手段探究硼钙之间相互作用的机制以及硼钙互作对植物生长发育的调控作用,尤其是两者在细胞壁的互作机制方面的研究进行了展望。
    Abstract: Interactions between plant nutrient elements and the mechanism of action have been the focus of important research. Boron (B) is an essential element for plants. In recent years, research on the correlation between boron and other elements has achieved a series of results. This article reviews the current research progress on plant morphology, metabonomics, and the cross-linking mechanism in the cell wall pectin network under different B and calcium (Ca) conditions. Furthermore, the use of metabonomics in determining the interaction mechanism between B and Ca on plant growth and development, especially research on the interaction mechanism between the two in the cell wall, are also prospected.
  • [1]

    Islam MZ, Mele MA, Baek JP, Kang HM. Cherry tomato qualities affected by foliar spraying with boron and calcium[J]. Hortic Environ Biotechnol, 2016, 57(1):46-52.

    [2] 董肖昌, 姜存仓, 刘桂东, 刘磊超,吴礼树. 低硼胁迫对根系调控及生理代谢的影响研究进展[J]. 华中农业大学学报, 2014, 33(3):133-137.

    Dong XC, Jiang CC, Liu GD, Liu LC, Wu LS. Advances on regulation and physiological metabolism of roots under the boron deficiency[J]. Journal of Huazhong Agricultural University, 2014, 33(3):133-137.

    [3] 焦晓燕, 杨治平, 赵瑞芬, 王立志. 硼对吲哚乙酸在植物体内运输的影响[J]. 应用生态学报, 2007, 18(2):366-370.

    Jiao XY, Yang ZP, Zhao RF, Wang LZ. Effects of boron on indole-3-acetic acid transportation in intact phaseolus aureus plant[J]. Chinese Journal of Applied Ecology, 2007, 18(2):366-370.

    [4] 周双云, 蒋晶, 高龙燕, 王令霞, 李绍鹏, 等. 不同浓度CaCl2对盐胁迫下巴西蕉幼苗生理的影响[J]. 应用与环境生物学报, 2014, 20(3):449-454.

    Zhou SY, Jiang J, Gao LY, Wang LX, Li SP, et al. Effects of CaCl2 concentration on physiology of Brazil banana seedling under NaCl stress[J]. Chinese Journal of Applied and Environment Biology, 2014, 20(3):449-454.

    [5]

    Mccann MC, Shi J, Roberts K, Carpita NC. Changes in pectin structure and localization during the growth of unadapted and NaCl-adapted tobacco cells[J]. Plant J, 2010, 5(6):773-785.

    [6]

    O'Neill MA, Ishii T, Albersheim P, Darvill AG. RhamnogalacturonanⅡ:structure and function of a borate cross-linked cell wall pectic polysaccharide[J]. Annu Rev Plant Biol, 2004, 55(1):109-139.

    [7] 杨玉华, 杜昌文, 吴礼树, 王运华. 不同硼效率甘蓝型油菜品种细胞壁中硼的分配[J]. 植物生理与分子生物学学报, 2002, 28(5):339-343.

    Yang YH, Du CW, Wu LS, Wang YH. Boron distribution in the cell wall in different boron efficiency rape cultivars (Brassica napus)[J]. Acta Photophysiologica Sinica, 2002, 28(5):339-343.

    [8]

    Funakawa H, Miwa K. Synthesis of borate cross-linked rhamnogalacturonan-Ⅱ [J]. Front Plant Sci, 2015, 6(223):223.

    [9]

    Wang HY, Wang YH, Du CW, Xu FS, Yang YH. Effects of boron and calcium supply on calcium fractionation in plants and suspension cells of rape cultivars with different boron efficiency[J]. J Plant Nutr, 2003, 26(4):789-806.

    [10]

    López-Lefebre LR, Rivero RM, García PC, Sánchez E, Ruiz JM. Boron effect on mineral nutrients of tobacco[J]. J Plant Nutr, 2002, 25(3):509-522.

    [11]

    Yamauchi T, Hara T, Sonoda Y. Effects of boron deficiency and calcium supply on the calcium metabolism in tomato plant[J]. Plant Soil, 1986, 93(2):223-230.

    [12]

    Reeve E, John W. Potassium-boron and calcium-boron relationships in plant nutrition[J]. Soil Sci, 1944, 57(1):1-14.

    [13]

    Nasirpour M, Khoshghalb H, Nemati H, Ramezani M, Rahimi M. Effect of humic acid, calcium and boron foliar application on yield and quantitative traits of tomato[J]. Agric Biol Res, 2018, 34(2):147-156.

    [14]

    Ekinci M, Esringü A, Dursun A, Yildirim E, Turan M, et al. Growth, yield, and calcium and boron uptake of tomato (Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.) as affected by calcium and boron humate application in green house conditions[J]. Turk J Agric For, 2015, 39:613-632.

    [15]

    Tariq M, Mott CJB. Effect of applied calcium-boron ratio on the availability of each to Radish (Raphanus sativus L.)[J]. Sarhad J Agric, 2007, 23(2):357-364.

    [16] 王火焰, 王运华, 吴礼树. 不同硼效率甘蓝型油菜品种的硼钙营养效应[J]. 中国油料作物学报, 1998, 20(2):59-65.

    Wang HY, Wang YH, Wu LS. Effects of boron-calcium nutrition on rape (Brassi canapus L.) varieties with different boron efficiency[J]. Chinese Journal of Oil Crop Sciences, 1998, 20(2):59-65.

    [17] 王火焰, 王运华. 不同硼效率甘蓝型油菜品种悬浮细胞的硼钙营养效应[J]. 植物营养与肥料学报, 2002, 8(1):100-104.

    Wang HY, Wang YH. Effects of boron-calcium nutrition on suspension-cell of rape cultivars with different boron efficiency[J]. Plant Natrition and Fertilizer Science, 2002, 8(1):100-104.

    [18] 邱超, 胡承孝, 谭启玲, 孙学成,郑苍松. 钙、硼对常山胡柚叶片养分、果实产量及品质的影响[J]. 植物营养与肥料学报, 2016, 22(2):459-467.

    Qiu C, Hu CX, Tan QL, Sun XC, Zheng CS. Effects of calcium and boron on leaf nutrition, fruit yield and quality of Changshanhuyou (Citrus changshanensis)[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2):459-467.

    [19] 杨苞梅, 李国良, 何兆桓,周昌敏,徐培智. 硼对荔枝果实产量和钙硼形态的影响[J]. 广东农业科学, 2016, 43(2):71-76.

    Yang BM, Li GL, He ZH, Zhou CM, Xu PZ. Effect boron on Litchi yield and Ca-B forms[J]. Guangdong Agricultu-ral Sciences, 2016, 43(2):71-76.

    [20] 蒋春姬, 王宁, 王晓光, 吴迪, 赵凯能. 钙钼硼肥对花生生长发育及产量品质的影响[J]. 中国油料作物学报, 2017, 39(4):524-531.

    Jiang CJ, Wang N, Wang XG, Wu D, Zhao KN. Effect of Ca, Mo and B fertilizer combined application on growth, development, yield and kernel quality of peanut[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(4):524-531.

    [21] 邱才飞, 钱银飞, 陈华玲, 彭火辉, 邵彩虹. 钙镁硼肥对人工栽培地稔生长的影响[J]. 南方农业学报, 2014, 45(4):605-608.

    Qiu CF, Qian YF, Chen HL, Peng HH, Shao CH. Effects of calcium, magnesium and boron fertilizer on Melastoma dodecandrum Lour. artificial cultivation[J]. Journal of Southern Agriculture, 2014, 45(4):605-608.

    [22] 董瑞文, 朱斌, 张新忠, 王忆, 吴婷. 叶施钙、硼对苹果果实糖含量及叶片矿质元素的影响[J]. 中国农业大学学报, 2016, 21(9):57-67.

    Dong RW, Zhu B, Zhang XZ, Wang Y, Wu T. Effect of foliar B and Ca on fruit sugar and leaf minerals in apple[J]. Journal of China Agricultural University, 2016, 21(9):57-67.

    [23]

    Shah A, Wu X, Ullah A, Fahad S, Muhammad R, et al. Deficiency and toxicity of boron:Alterations in growth, oxidative damage and uptake by citrange orange plants[J]. Ecotoxicol Environ Saf, 2017, 145(6):575-582.

    [24]

    Turan MA, Taban N, Taban S. Effect of calcium on the alleviation of boron toxicity and localization of boron and calcium in cell wall of wheat[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2009, 37(2):99-103.

    [25] 姚元涛, 陶吉寒, 宋鲁彬, 田丽丽, 刘腾飞. 钙、锰、铝及与硼的协同胁迫对茶树的毒害效应[J]. 植物生理学报, 2015, 51(11):1867-1872.

    Yao YT, Tao JH, Song LB, Tian LL, Liu TF. Poison effects of synergistic stress of calcium, manganese, aluminum and boron on tea plant[J]. Plant Physiology Journal, 2015, 51(11):1867-1872.

    [26] 刘桂东, 胡萍, 张婧卉, 周高峰, 曾钰, 等. 缺硼对脐橙幼苗硼分配及叶片细胞壁组分硼含量的影响[J]. 植物营养与肥料学报, 2018, 24(1):179-186.

    Liu GD, Hu P, Zhang JH, Zhou GF, Zeng Y, et al. Effect of boron deficiency on boron distribution in different plant parts and boron concentration in leaf cell wall components in navel orange plants[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1):179-186.

    [27] 杨瑞, 高赛, 王金金, 秦岭, 房克凤. 外源硼和钙对"索邦"百合花粉萌发和花粉管生长的影响[J]. 电子显微学报, 2014, 33(4):368-372.

    Yang R, Gao S, Wang JJ, Qin L, Fang KF. Effects of exogenous boron and calcium on pollen germination and tube growth of Lilium oriental ‘Sorbonne’[J]. Journal of Chinese Electron Microscopy Society, 2014, 33(4):368-372.

    [28] 姜存仓, 王运华, 刘桂东, 夏颖, 彭抒昂, 等. 赣南脐橙叶片黄化及施硼效应研究[J]. 植物营养与肥料学报, 2009, 15(3):656-661.

    Jiang CC, Wang YH, Liu GD, Xia Y, Peng SA, et al. Effect of boron on the leaves etiolation and fruit fallen of Newhall navel orange[J]. Plant Nutrition and Fertilizer Science, 2009, 15(3):656-661.

    [29]

    Zhou T, Hua YP, Xu FS. Involvement of reactive oxygen species and Ca2+, in the differential responses to low-boron in rapeseed genotypes[J]. Plant Soil, 2017, 419(1-2):219-236.

    [30]

    Herrera MB. Boron deficiency increases the levels of cytosolic Ca2+ and expression of Ca2+-related genes in Arabidopsis thaliana roots[J]. Plant Physiol Biochem, 2013, 8(11):55-60.

    [31] 徐芳森, 王运华. 我国作物硼营养与硼肥施用的研究进展[J]. 植物营养与肥料学报, 2017, 23(6):1556-1564.

    Xu FS, Wang YH. Advances in studies on crop boron nutrition and application of boron fertilizers in China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6):1556-1564.

    [32] 谢玉明, 易干军, 张秋明. 钙在果树生理代谢中的作用[J]. 果树学报, 2003, 20(5):369-373.

    Xie YM, Yi GJ, Zhang QM. Effects of calcium in physiology and metabolism of fruit crops[J]. Journal of Fruit Science, 2003, 20(5):369-373.

    [33] 韩配配, 秦璐, 李银水, 廖祥生, 徐子先, 等. 不同营养元素缺乏对甘蓝型油菜苗期生长和根系形态的影响[J]. 中国油料作物学报, 2016, 38(1):88-97.

    Han PP, Qin L, Li YS, Liao XS, Xu ZX, et al. Effects of different nutrient deficiencies on growth and root morphological changes of rapeseed seedlings (Brassica napus L.)[J]. Chinese Journal of Oil Crop Sciences, 2016, 38(1):88-97.

    [34] 杨阳, 尹向田, 韩晓梅, 王咏梅, 吴新颖, 等. 叶面喷施硼钙营养对葡萄叶片生理生化特性的影响[J]. 北方园艺, 2017(22):25-31.

    Yang Y, Yin XT, Han XM, Wang YM, Wu XY, et al. Effects of foliar boron and calcium spraying on physiological and biochemical characteristics of grape leaf[J]. Northern Horticulture, 2017(22):25-31.

    [35] 任向楠, 梁琼麟. 基于质谱分析的代谢组学研究进展[J]. 分析测试学报, 2017, 36(2):161-169.

    Ren XN, Liang QL. Advance in metabolomics based on mass spectrometry[J]. Journal of Instrumental Analysis, 2017, 36(2):161-169.

    [36]

    Roessner U, Patterson JH, Forbes MG, Fincher GB, Langridge P, et al. An investigation of boron toxicity in barley using metabolomics[J]. Plant Physiol, 2006, 142:1087-1101.

    [37]

    Alves M, Chicau P, Matias H, Passarinho J, Pinheiro C, et al. Metabolic analysis revealed altered amino acid profiles in Lupinus albus organs as a result of boron deficiency[J]. Physiol Plantarum, 2011, 142:224-232.

    [38]

    Liu GD, Dong XC, Liu LC, Wu LS, Peng SA, et al. Metabolic profiling reveals altered pattern of central metabolism in navel orange plants as a result of boron deficiency[J]. Physiol Plantarum, 2015, 153(4):513-24.

    [39]

    Dong XC, Liu GD, Wu XW, Lu XP, Yan L, et al. Different metabolite profile and metabolic pathway with leaves and roots in response to boron deficiency at the initial stage of citrus rootstock growth[J]. Plant Physio Biochem, 2016, 108:121-131.

    [40] 左娜, 陈洁, 吕莹果. 植物钙调素及其结合蛋白的结构生物学进展[J]. 粮食与油脂, 2016, 29(9):1-5.

    Zuo N, Chen J, Lü YG. Advance progress in plant calmo-dulin and calmodulin-binding proteins structure biology[J]. Cereals and Oils, 2016, 29(9):1-5.

    [41]

    Zeng HQ, Xu LQ, Singh A, Wang HZ, Du LQ, et al. Involvement of calmod ulin and calmodulin-like proteins in plant responses to abiotic stresses[J]. Front Plant Sci, 2015, 6(660):600.

    [42]

    Hoeflich KP, Ikura M. Calmodulin in action:diversity in target recognition and activation mechanisms[J]. Cell,2002, 108(6):739-742.

    [43]

    Bouché N, Yellin A, Snedden WA, Fromm H. Plant-specific calmodulin-bin ding proteins[J]. Annu Rev Plant Biol, 2005, 56(1):435-466.

    [44]

    Du LQ, Yang TB, Puthanveettil SV, Poovaiah BW. Decoding of calcium signal through calmodulin:calmodulin-binding proteins in plants[M]//Luan S, ed. Coding and Decoding of Calcium Signals in Plants. Berlin:Springer-Verlag, 2011.

    [45] 曾后清, 张亚仙, 汪尚, 张夏俊, 王慧中, 等. 植物钙/钙调素介导的信号转导系统[J]. 植物学报, 2016, 51(5):705-723.

    Zeng HQ, Zhang YX, Wang S, Zhang XJ, Wang HZ, et al. Calcium/calmodulin-mediated signal transduction system in plants[J]. Chinese Bulletin of Botany, 2016, 51(5):705-723.

    [46]

    Ridley B L, O'Neill MA, Mohnen D. Pectins:structure, biosynthesis, and oligogalacturonide-related signaling[J]. Phytochemistry, 2001, 57(6):929-67.

    [47]

    Vincken JP, Schols HA, Oomen RJFJ, McCann MC, Ulvskov P, et al. If homogalacturonan were a side chain of rhamnogalacturonanⅠ. Implications for cell wall architecture[J]. Plant Physiol, 2003, 132(4):1781-1789.

    [48]

    Ngouémazong DE, Tengweh FF, Fraeye I, Duvetter T, Cardinaels R, et al. Effect of demethylesterification on network development and nature of Ca2+-pectin gels:Towards understanding structure-function relations of pectin[J]. Food Hydrocolloids, 2012, 26(1):89-98.

    [49]

    Levesque-Tremblay G, Pelloux J, Braybrook SA, Müller K. Tuning of pectin methylesterification:consequences for cell wall biomechanics and development[J]. Planta, 2015, 242(4):791-811.

    [50]

    Caffall KH, Mohnen D, Morris V. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides[J]. Carbohydr Res, 2009, 344(14):1879-1900.

    [51]

    Shi DC, Wang J, Hu RB, Zhou GK, O'Neill MA, et al. Boron-bridged RG-Ⅱ and calcium are required to maintain the pectin network of the Arabidopsis seed mucilage ultrastructure[J]. Plant Mol Biol, 2017, 94(3):1-14.

    [52]

    Chormova D, Messenger DJ, Fry SC. Boron bridging of rhamnogalacturon an-Ⅱ, monitored by gel electrophoresis, occurs during polysaccharide synthesis and secretion but not post-secretion[J]. Plant J, 2014, 77(4):534-46.

    [53]

    González-Fontes A, Navarro-Gochicoa MT, Camacho-Cristóbal JJ,Herrera-Rodríguez MB, Quiles-Pando C, et al. Is Ca2+ involved in the signal transduction pathway of boron deficiency? New hypotheses for sensing boron deprivation[J]. Plant Sci, 2015, 218(1):135-139.

  • 期刊类型引用(6)

    1. 童嘉琳,楼姝坪,徐云敏,朱祝军,何勇. 植物miR396及其靶基因进化、功能与应用研究进展. 核农学报. 2024(03): 472-480 . 百度学术
    2. 高明刚,李明,段高飞,王滕飞,冯晓健,许瑞瑞. 苹果GRF基因家族在非生物胁迫下的表达分析. 西北农业学报. 2024(01): 141-147 . 百度学术
    3. 孙龙飞,黄萍. 紫花苜蓿生长调节因子的全基因组鉴定及干旱胁迫下特征分析. 江苏农业科学. 2024(12): 45-52 . 百度学术
    4. 周文杰,张文瀚,贾玮,许自成,黄五星. 植物miRNA响应非生物胁迫研究进展. 植物学报. 2024(05): 810-833 . 百度学术
    5. 董家琦,吴淋慧,郑浩,张琼,钟彩虹. 高等植物性别分化的研究进展. 植物科学学报. 2024(05): 664-672 . 本站查看
    6. 赵思航,刘昊东,徐渴,张树华,赵勇,杨学举. 小麦中MIR160基因家族的生物信息学分析及靶基因鉴定. 分子植物育种. 2023(01): 27-35 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  872
  • HTML全文浏览量:  11
  • PDF下载量:  808
  • 被引次数: 6
出版历程
  • 收稿日期:  2018-03-03
  • 网络出版日期:  2022-10-31
  • 发布日期:  2018-10-27

目录

    /

    返回文章
    返回