高级检索+

葫芦巴环阿屯醇合酶基因的分离及其对薯蓣皂素合成的影响

刘梦迪, 李长福, 章焰生

刘梦迪, 李长福, 章焰生. 葫芦巴环阿屯醇合酶基因的分离及其对薯蓣皂素合成的影响[J]. 植物科学学报, 2019, 37(1): 87-92. DOI: 10.11913/PSJ.2095-0837.2019.10087
引用本文: 刘梦迪, 李长福, 章焰生. 葫芦巴环阿屯醇合酶基因的分离及其对薯蓣皂素合成的影响[J]. 植物科学学报, 2019, 37(1): 87-92. DOI: 10.11913/PSJ.2095-0837.2019.10087
Liu Meng-Di, Li Chang-Fu, Zhang Yan-Sheng. Molecular cloning of cycloartenol synthase from Trigonella foenum-graecum L. and its effect on diosgenin biosynthesis[J]. Plant Science Journal, 2019, 37(1): 87-92. DOI: 10.11913/PSJ.2095-0837.2019.10087
Citation: Liu Meng-Di, Li Chang-Fu, Zhang Yan-Sheng. Molecular cloning of cycloartenol synthase from Trigonella foenum-graecum L. and its effect on diosgenin biosynthesis[J]. Plant Science Journal, 2019, 37(1): 87-92. DOI: 10.11913/PSJ.2095-0837.2019.10087
刘梦迪, 李长福, 章焰生. 葫芦巴环阿屯醇合酶基因的分离及其对薯蓣皂素合成的影响[J]. 植物科学学报, 2019, 37(1): 87-92. CSTR: 32231.14.PSJ.2095-0837.2019.10087
引用本文: 刘梦迪, 李长福, 章焰生. 葫芦巴环阿屯醇合酶基因的分离及其对薯蓣皂素合成的影响[J]. 植物科学学报, 2019, 37(1): 87-92. CSTR: 32231.14.PSJ.2095-0837.2019.10087
Liu Meng-Di, Li Chang-Fu, Zhang Yan-Sheng. Molecular cloning of cycloartenol synthase from Trigonella foenum-graecum L. and its effect on diosgenin biosynthesis[J]. Plant Science Journal, 2019, 37(1): 87-92. CSTR: 32231.14.PSJ.2095-0837.2019.10087
Citation: Liu Meng-Di, Li Chang-Fu, Zhang Yan-Sheng. Molecular cloning of cycloartenol synthase from Trigonella foenum-graecum L. and its effect on diosgenin biosynthesis[J]. Plant Science Journal, 2019, 37(1): 87-92. CSTR: 32231.14.PSJ.2095-0837.2019.10087

葫芦巴环阿屯醇合酶基因的分离及其对薯蓣皂素合成的影响

基金项目: 国家自然科学基金项目(31670300)
详细信息
    作者简介:

    刘梦迪(1993-),女,硕士研究生,研究方向为植物天然产物生物合成(E-mail:liumengdi15@mails.ucas.edu.cn)

    通讯作者:

    章焰生.Email:zhangys@wbgcas.cn

  • 中图分类号: Q943.2

Molecular cloning of cycloartenol synthase from Trigonella foenum-graecum L. and its effect on diosgenin biosynthesis

Funds: This work was supported by a grant from the National Natural Science Foundation of China (31670300)
  • 摘要: 以薯蓣皂素合成植物葫芦巴(Trigonella foenum-graecum L.)为材料,从中分离了环阿屯醇合酶基因TfCAS,并对其序列特征、基因的表达及其对葫芦巴薯蓣皂素生物合成的影响进行了分析。结果显示,该基因全长2271 bp,共编码756个氨基酸;其氨基酸序列与蒺藜苜蓿(Medicago truncatula Gaertn.)、豌豆(Pisum sativum L.)及百脉根(Lotus japonicus L.)环阿屯醇合酶氨基酸序列的同源性分别为94%、91%和89%。利用酵母表达系统对TfCAS蛋白的生物化学功能进行了验证,结果表明该蛋白能够催化环阿屯醇的合成。进一步利用葫芦巴发根遗传转化体系在葫芦巴中过量表达TfCAS基因,发现该基因的过量表达大幅提高了TfCAS的表达,且促进了葫芦巴中β-谷甾醇和薯蓣皂素的生物合成,但与对照相比差异不显著。研究结果表明TfCAS基因参与了葫芦巴薯蓣皂素的生物合成,但其并非为该合成途径中的限速酶。
    Abstract: As a naturally occurring steroid sapogenin, diosgenin is an important intermediate for the synthesis of hundreds of steroid drugs. However, the biosynthetic pathway to diosgenin has not yet been completely elucidated and it remains unclear whether diosgenin biosynthesis originates from lanosterol or cycloartenol. In this study, the gene encoding cycloartenol synthase (CAS), TfCAS, was successfully cloned from a diosgenin-producing plant Trigonella foenum-graecum L. The open reading frame of the TfCAS gene had 2 271 base pairs of nucleotides encoding 756 amino acids. TfCAS showed 94%, 91%, and 89% of amino acid identities to the CASs from Medicago truncatula Gaertn., Pisum sativum L., and Lotus japonicas L., respectively. Biochemical analysis using a yeast expression system confirmed that TfCAS encodes a functional CAS protein that can convert 2,3-oxidosqualene into cycloartenol. The TfCAS transcript level in Trigonella foenum-graecum was further genetically modified by overexpressing the TfCAS gene via the hairy root transformation system. Real-time PCR analysis showed that the TfCAS transcript level was significantly up-regulated in the TfCAS-expressed hairy roots, suggesting success of the transgene events. Compared with the empty vector-transformed lines, the overexpression of TfCAS led to a slight but non-significant improvement in the biosynthesis of diosgenin and β-sitosterol. These data indicate that TfCASmay not be a rate limiting enzyme but may play a role in the diosgenin synthetic pathway in Trigonella foenum-graecum.
  • [1] Rajalingam K,Sugunadevi G,Arokia VM,Kalaimathi J,Suresh K. Anti-tumour and anti-oxidative potential of diosgenin against 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis[J]. Pathol Oncol Res,2012,18(2):405-412.
    [2] Tong QY,He Y,Zhao QB,Qing Y,Huang W,Wu XH. Cytotoxicity and apoptosis-inducing effect of steroidal saponins from Dioscorea zingiberensis Wright against cancer cells[J]. Steroids,2012,77(12):1219-1227.
    [3] Man SL,Gao WY,Zhang YJ,Huang LQ,Liu CX. Chemical study and medical application of saponins as anti-cancer agents[J]. Fitoterapia,2010,81(7):703-714.
    [4] Sautour M,Mitaine-Offer AC,Miyamoto T,Dongmo A,Lacaille-Dubois MA. Antifungal steroid saponins from Dioscorea cayenensis[J]. Planta Med,2004,70(1):90-92.
    [5] 于海荣,王济兴,陈建双,周小春,宋鸿儒. 穿山龙总皂苷含药血清对小鼠脾淋巴细胞增殖及IL-6产生影响的实验研究[J]. 江苏中医药,2007,39(1):57-58.
    [6] Wang YJ,Pan KL,Hsieh TC,Chang TY,Lin WH,Hsu JTA. Diosgenin,a plant-derived sapogenin,exhibits antiviral activity in vitro against Hepatitis C virus[J]. J Nat Prod,2011,74(4):580-584.
    [7] Dong J,Lei C,Lu D,Wang Y. Direct biotransformation of dioscin into diosgenin in rhizome of Dioscorea zingiberensis by Penicillium dioscin[J]. Indian J Microbiol,2015,55(2):200-206.
    [8] Bennett RD,Heftmann E. Biosynthesis of Dioscorea sapogenins from cholesterol[J]. Phytochemistry,1965,4(4):577-586.
    [9] Stohs SJ,Kaul B,Staba EJ. The metabolism of 14C-cholesterol by Dioscorea deltoidea suspension cultures[J]. Phytochemistry,1969,8(9):1679-1686.
    [10] Joly RA,Bonner J,Bennett RD,Heftmann E. The biosynthesis of steroidal sapogenins in Dioscorea floribunda from doubly labelled cholesterol[J]. Phytochemistry,1969,8(9):1709-1711.
    [11] Stohs SJ,Sabatka JJ,Rosenberg H,Stohs SJ,Sabatka JJ,Rosenberg H. Incorporation of 4-14C-22,23-3 H-sito-sterol into diosgenin by Dioscorea deltoidea tissue suspension cultures[J]. Phytochemistry,1974,13(10):2145-2148.
    [12] Caspi E,Sliwowski J. Letter:on the role of cycloartenol in the formation of phytosterols. Biosynthesis of (19-2H) sitosterol in deuterium oxide germinated peas[J]. J Am Chem Soc,1975,97(17):5032-5034.
    [13] Sonawane PD,Pollier J,Panda S,Szymanski J,Massalha H,et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism[J]. Nat Plants,2016,3(1):16205.
    [14] Morita M,Shibuya M,Lee MS,Sankawa U,Ebizuka Y. Molecular cloning of pea cDNA encoding cycloartenol synthase and its functional expression in yeast[J]. Biol Pharm Bull,1997,20(7):770-775.
    [15] Zhang H,Shibuya M,Yokota S,Ebizuka Y. Oxidosqua-lene cyclases from cell suspension cultures of Betula platyphylla var.japonica:molecular evolution of oxidosqua-lene cyclases in higher plants[J]. Biol Pharm Bull,2003,26(5):642-650.
    [16] 陈迪,陈永勤,杨之帆,张艳艳,肖柳青. 盾叶薯蓣环阿屯醇合酶基因克隆与表达[J]. 西北植物学报,2009,29(2):221-228. Chen D,Chen YQ,Yang ZF,Zhang YY,Xiao LQ. Molecular cloning and expression of cycloartenol synthase gene from Dioscorea zingiberensis[J]. Acta Botanica Boreali-Occidentalia Sinica,2009,29(2):221-228.
    [17] Gaspascual E,Simonovik B,Schaller H,Bach TJ. Inhibition of cycloartenol synthase (CAS) function in tobacco BY-2 Cells[J]. Lipids,2015,50(8):773-784.
    [18] Mishra S,Bansal S,Mishra B,Sangwan RS,Asha,et al. RNAi and homologous over-expression based functional approaches reveal triterpenoid synthase gene-cycloartenol synthase is involved in downstream withanolide biosynthesis in Withania somnifera[J]. PLoS One,2016,11(2):e0149691.
    [19] 中国科学院中国植物志编辑委员会. 中国植物志:第42卷,第2分册[M]. 北京:科学出版社,1990.
    [20] 李晓华,李长福,黎佳,刘梦迪,章焰生. 两种影响因子对葫芦巴发根转化率的影响[J]. 植物科学学报,2017,35(5):735-740. Li XH,Li CF,Li J,Liu MD,Zhang YS. Effect of two key treatments on the transformation efficiency of fenugreek hairy roots[J]. Plant Science Journal,2017,35(5):735-740.
    [21] Murashige T,Skoog F. A revised medium for rapid growth and bioassays with tabacco tissue cultures[J]. Physiol Plantarum,2010,15(3):473-497.
    [22] 汪波. 丹参酚酸和薯蓣皂苷生物合成基因的挖掘与分析[D]. 北京:北京协和医学院,2015.
    [23] 黄亚辉,盛孝邦. 薯蓣皂甙元的研究进展[J]. 中国野生植物资源,2005,24(5):20-23. Huang YH,Sheng XB. Advances in research of diosgenin[J]. Chinese Wild Plant Resources,2005,24(5):20-23.
    [24] Li J,Liang Q,Li CF,Liu MD,Zhang YS. Comparative transcriptome analysis identifies putative genes involved in dioscin biosynthesis in Dioscorea zingiberensis[J]. Molecules,2018,23(2):454.
    [25] Sun W,Wang B,Yang J,Wang W,Liu A,et al. Weighted gene co-expression network analysis of the dioscin rich medicinal plant Dioscorea nipponica[J]. Front Plant Sci,2017,8:789.
    [26] Diarra ST,He J,Wang J,Li J. Ethylene treatment improves diosgenin accumulation in in vitro cultures of Dioscorea zingiberensisvia up-regulation of CAS and HMGR gene expression[J]. Electron J Biotechn,2013,16(5):6-16.
  • 期刊类型引用(2)

    1. 刘文鑫,陈志成,代永欣,万贤崇. 水通道蛋白PIP1基因过表达杨树的光合生理过程对干旱和复水的响应. 林业科学. 2020(02): 69-78 . 百度学术
    2. 温婷,张露,程子珊,朱博,陈伏生,易敏,谌梦云,李响. 鲜食枣‘麻姑1号’枣吊光合及叶绿素荧光特性. 经济林研究. 2020(04): 177-183+245 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  512
  • HTML全文浏览量:  3
  • PDF下载量:  696
  • 被引次数: 7
出版历程
  • 收稿日期:  2018-08-27
  • 修回日期:  2018-09-24
  • 发布日期:  2019-02-27

目录

    /

    返回文章
    返回