高级检索+

钾离子转运载体HAK/KUP/KT家族参与植物耐盐性的研究进展

李学文, 游西龙, 王艳

李学文, 游西龙, 王艳. 钾离子转运载体HAK/KUP/KT家族参与植物耐盐性的研究进展[J]. 植物科学学报, 2019, 37(1): 101-108. DOI: 10.11913/PSJ.2095-0837.2019.10101
引用本文: 李学文, 游西龙, 王艳. 钾离子转运载体HAK/KUP/KT家族参与植物耐盐性的研究进展[J]. 植物科学学报, 2019, 37(1): 101-108. DOI: 10.11913/PSJ.2095-0837.2019.10101
Li Xue-Wen, You Xi-Long, Wang Yan. Research progress of HAK/KUP/KT potassium transporter family in plant response to salt stress[J]. Plant Science Journal, 2019, 37(1): 101-108. DOI: 10.11913/PSJ.2095-0837.2019.10101
Citation: Li Xue-Wen, You Xi-Long, Wang Yan. Research progress of HAK/KUP/KT potassium transporter family in plant response to salt stress[J]. Plant Science Journal, 2019, 37(1): 101-108. DOI: 10.11913/PSJ.2095-0837.2019.10101
李学文, 游西龙, 王艳. 钾离子转运载体HAK/KUP/KT家族参与植物耐盐性的研究进展[J]. 植物科学学报, 2019, 37(1): 101-108. CSTR: 32231.14.PSJ.2095-0837.2019.10101
引用本文: 李学文, 游西龙, 王艳. 钾离子转运载体HAK/KUP/KT家族参与植物耐盐性的研究进展[J]. 植物科学学报, 2019, 37(1): 101-108. CSTR: 32231.14.PSJ.2095-0837.2019.10101
Li Xue-Wen, You Xi-Long, Wang Yan. Research progress of HAK/KUP/KT potassium transporter family in plant response to salt stress[J]. Plant Science Journal, 2019, 37(1): 101-108. CSTR: 32231.14.PSJ.2095-0837.2019.10101
Citation: Li Xue-Wen, You Xi-Long, Wang Yan. Research progress of HAK/KUP/KT potassium transporter family in plant response to salt stress[J]. Plant Science Journal, 2019, 37(1): 101-108. CSTR: 32231.14.PSJ.2095-0837.2019.10101

钾离子转运载体HAK/KUP/KT家族参与植物耐盐性的研究进展

基金项目: 新疆维吾尔自治区重点实验室开放课题(2017D04026)
详细信息
    作者简介:

    李学文(1992-),男,硕士研究生,研究方向为植物抗逆生理生化与分子机制(E-mail:1037635463@qq.com)

    通讯作者:

    王艳.Email:wangyanxju@126.com

  • 中图分类号: Q943.2

Research progress of HAK/KUP/KT potassium transporter family in plant response to salt stress

Funds: This work was supported by a grant from the Open Project of Key Laboratory of Xinjiang Uygur Autonomous Region (2017D04026)
  • 摘要: 钾可以通过多种方式参与植物的生长和发育,在植物缓解盐等非生物胁迫方面发挥重要作用。在植物中,HAK/KUP/KT是成员数目最多的一类高亲和钾转运蛋白家族,本文对该家族成员的分类、盐胁迫下钾的吸收、转运、生理功能和分子调控机制等方面的研究进行了综述,并对该转运体家族今后的研究方向进行了展望。
    Abstract: Potassium is involved in plant growth and development in a variety of ways and also plays an important role in mitigating salt stress. HAK/KUP/KT is the largest family of potassium transporters in plants. We summarized its roles in potassium absorption, transportation, physiological function, and molecular mechanisms in response to salinity stress. Future development of the HAK/KUP/KT family is discussed.
  • [1] Nabati J,Kafi M,Nezami A,Moghaddam PR,Ali M,Mehrjerdi MZ. Effect of salinity on biomass production and activities of some key enzymatic antioxidants in Kochia (Kochia scoparia)[J]. Pak J Bot,2011,43(1):539-548.
    [2] Munns R,Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol,2008,59(1):651-681.
    [3] Anschutz U,Becker D,Shabala S. Going beyond nutrition:regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment[J]. J Plant Physiol,2014,171(9):670-687.
    [4] Chérel I,Lefoulon C,Boeglin M,Sentenac H. Molecular mechanisms involved in plant adaptation to low K+ availability[J]. J Exp Bot,2014,65(3):833-848.
    [5] Abbasi GH,Javaid A,Anwar-ul-Haq M,Ali S. Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids[J]. Pak J Bot,2016,46(1):135-146.
    [6] Abbasi H,Jamil M,Haq A,Ali S,Ahmad R,et al. Salt stress manifestation on plants,mechanism of salt tole-rance and potassium role in alleviating it:a review[J]. Zemdirbyste,2016,103(2):229-238.
    [7] Epstein E. Dual pattern of ion absorption by plant cells and by plants[J]. Nature,1966,212(5068):1324-1327.
    [8] Li WH,Xu GH,Alli A,Yu L. Plant HAK/KUP/KT K+ transporters:function and regulation[J]. Semin Cell Dev Biol,2018,74:133-141.
    [9] Chen ZH,Newman I,Zhou MX,Mendham N,Zhang G,Shabala S. Screening plants for salt tolerance by measu-ring K+ flux:a case study for barley[J]. Plant Cell Environ,2005,28(10):1230-1246.
    [10] Adams E,Shin R. Transport,signaling,and homeostasis of potassium and sodium in plants[J]. J Integr Plant Biol,2014,56(3):231-249.
    [11] Tavakkoli E,Fatehi F,Coventry S,Rengasamy P,Mcdonald GK. Additive effects of Na+ and Cl- ions on barley growth under salinity stress[J]. J Exp Bot,2011,62(6):2189-2203.
    [12] Shabala S,Cuin TA. Potassium transport and plant salt tolerance[J]. Physiol Plant,2008,133(4):651-669.
    [13] Rodrigo-moreno A,Andrés-colás N,Poschenrieder C,Gunsé B,Penarrubia L,Shabala S. Calcium-and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips:linking copper transport with cytosolic hydroxyl radical production[J]. Plant Cell Environ,2013,36(4):844-855.
    [14] Demidchik V,Cuin TA,Svistunenko D,Smith SJ,Miller AJ,et al. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals:single-channel properties,genetic basis and involvement in stress-induced cell death[J]. J Cell Sci,2010,123(9):1468-1479.
    [15] Rodrigo-moreno A,Poschenrieder C,Shabala S. Transition metals:a double edge sward in ROS generation and signaling[J]. Plant Signal Behav,2013,8(3):e23421-e23425.
    [16] Shabala S,Pottosin I. Regulation of potassium transport in plants under hostile conditions:implications for abiotic and biotic stress tolerance[J]. Physiol Plantarum,2014,151(3):257-279.
    [17] Véry AA,Nieves-Cordones M,Daly M,Khan I,Fizames C,Sentenac H. Molecular biology of K+,transport across the plant cell membrane:what do we learn from comparison between plant species[J]. J Plant Physiol,2014,171(9):748-769.
    [18] Rubio F,Santa-María GE,Rodríguez-Navarro A. Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells[J]. Physiol Plantarum,2000,109(1):34-43.
    [19] Bañuelos MA,Garciadeblas B,Cubero B,RodríGuez-Navarro A. Inventory and functional characterization of the HAK potassium transporters of rice[J]. Plant Physiol,2002,130(2):784-95.
    [20] Yang TY,Zhang S,Hu YB,Wu FC,Hu QD,et al. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels[J]. Plant Physiol,2014,166(2):945-959.
    [21] Horie T,Sugawara M,Okada T,Taira K,Kaothiennaka-yama P,et al. Rice sodium-insensitive potassium transpor-ter,OsHAK5,confers increased salt tolerance in tobacco BY2 cells[J]. J Biosci Bioeng,2011,111(3):346-356.
    [22] Takahashi R,Nishio T,Ichizen N,Takano T. High-affinity K+ transporter PhaHAK5 is expressed only in salt-sensitive reed plants and shows Na+ permeability under NaCl stress[J]. Plant Cell Rep,2007,26(9):1673-1679.
    [23] Yang ZF,Gao QS,Sun CS,Li WJ,Gu SL,Xu CW. Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.)[J]. J Genet Genomics,2009,36(3):161-172.
    [24] Kim EJ,Kwak JM,Uozumi N,Schroeder JI. AtKUP1:an Arabidopsis gene encoding high-affinity potassium transport activity[J]. Plant Cell,1998,10(1):51-62.
    [25] Hyun TK,Rim Y,Kim E,Kim JS. Genome-wide and molecular evolution analyses of the KT/HAK/KUP family in tomato (Solanum lycopersicum L.)[J]. Genes Genom,2014,36(3):365-374.
    [26] Song ZZ,Ma RJ,Yu ML. Genome-wide analysis and identification of KT/HAK/KUP potassium transporter gene family in peach (Prunus persica)[J]. Genet Mol Res,2015,14(1):774-787.
    [27] 晁毛妮,温玉清,张晋玉,张志勇,董洁,于亚鑫. 大豆KUP/HAK/KT钾转运体基因家族的鉴定与表达分析[J]. 西北植物学报,2017,37(2):239-241,244-249. Chao MN,Wen YQ,Zhang JY,Zhang ZY,Dong J,Yu YX. Identification and expression analysis of KUP/HAK/KT potassium transporter gene family in soybean (Glycine max(L.) Merr.)[J].Acta Botanica Boreali-Occidentalia Sinica,2017,37(2):239-241,244-249.
    [28] Li Y,Peng LR,Xie CY,Shi XQ,Dong CX,et al. Genome-wide identification,characterization,and expression analyses of the HAK/KUP/KT,potassium transporter gene family reveals their involvement in K+,deficient and abiotic stress responses in pear rootstock seedlings[J]. Plant Growth Regul,2018,85(2):187-198.
    [29] Ou WJ,Mao X,Huang C,Tie WW,Yan Y,et al. Genome-wide identification and expression analysis of the KUP family under abiotic stress in cassava (Manihot esculentaCrantz)[J]. Front Physiol,2018,9:17.
    [30] Rubio F,Alemán F,Nievescordones M,Martínez V. Differential regulation of the genes encoding the high-affinity K+ transporters HAK5 of Thellungiella halophilaand Arabidopsis thalianain response to salinity[J]. Environ Exp Bot,2009,65(2-3):263-269.
    [31] 杨中敏,王艳. 盐穗木钾转运蛋白基因HcKUP12的克隆及在盐胁迫下的表达分析[J]. 植物科学学报,2015,33(4):499-506.Yang ZM,Wang Y. Cloning of potassium transporter gene (HcKUP1) from Halostachys caspicaand its expression profile under salt stress[J]. Plant Science Journal,2015,33(4):499-506.
    [32] Bañuelos MA,Garciadeblas B,Cubero B,RodríGuezNavarro A. Inventory and functional characterization of the HAK potassium transporters of rice[J]. Plant Physiol,2002,130(2):784-95.
    [33] Chen G,Hu QD,Luo L,Yang TY,Zhang S,et al. Rice potassium transporter OsHAK1 is essential for maintaining potassium mediated growth and functions in salt tolerance over low and high potassium concentration ranges[J]. Plant Cell Environ,2016,38(12):2747-2765.
    [34] Yang T,Zhang S,Hu YB,Wu FC,Hu QB,et al. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels[J]. Plant Physiol,2014,166(2):945-959.
    [35] Shen Y,Shen LK,Shen ZX,Jing W,Ge HL,et al. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice[J]. Plant Cell Environ,2015,38(12):2766-2779.
    [36] Qi Z,Hampton CR,Shin R,Barkla BJ,White PJ,Schachtman DP. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis[J]. J Exp Bot,2008,59(3):595-607.
    [37] Maathuis FJ. Physiological functions of mineral macronut rients[J]. Curr Opin Plant Biol,2009,12(3):250-258.
    [38] Maathuis FJ. The role of monovalent cation transporters in plant responses to salinity[J]. J Exp Bot,2006,57(5):1137-1147.
    [39] Takahashi R,Nishio T,Ichizen N,Takano T. High-affinity+ transporter PhaHAK5 is expressed only in salt-sensitive reed plants and shows Na+ permeability under NaCl stress[J]. Plant Cell Rep,2007,26(9):1673-1679.
    [40] Liu JF,Zhang SL,Tang HL,Wu LZ,Dong LJ,et al. Overexpression of an Aeluropus littoralisParl. potassium transporter gene,AlHAK1,in cotton enhances potassium uptake and salt tolerance[J]. Euphytica,2015,203(1):197-209.
    [41] Ruiz-Lau N,Bojórquez-Quintal E,Benito B,Echevarría-Machado I,Sánchez-Cach LA,et al. Molecular cloning and functional analysis of a Na+-insensitive K+ transporter of Capsicum chinenseJacq[J]. Front Plant Sci,2016,7:1980-1994.
    [42] Bacha H,Ródenas R,López-Gómez E,García-Legaz MF,Nieves-Cordones M,et al. High Ca2+ reverts the repression of high-affinity K+ uptake produced by Na+ in Solanum lycopersycumL. (var. microtom) plants[J]. J Plant Physiol,2015,180:72-79.
    [43] Wang Y,Wu WH. Potassium transport and signaling in higher plants[J]. Annu Rev Plant Biol,2013,64(1):451-476.
    [44] Ma TL,Wu WH,Wang Y. Transcriptome analysis of rice root responses to potassium deficiency[J]. BMC Plant Biol,2012,12(1):161-174.
    [45] Li L,Kim BG,Cheong YH,Pandey GK,Luan S. A Ca2+,signaling pathway regulates a K+,channel for low-K response in Arabidopsis[J]. Proc Natl Acad Sci USA,2006,103(33):12625-12630.
    [46] Li J,Long Y,Qi GN,Li J,Xu ZJ,et al. The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex[J]. Plant Cell,2014,26(8):3387-3402.
    [47] Liu LL,Ren HM,Chen LQ,Wang Y,Wu WH. A protein kinase CIPK9 interacts with calcium sensor CBL3 and regulates K+ homeostasis under low-K+ stress in Arabidopsis[J]. Plant Physiol,2012,161(1):266-277.
    [48] Ragel P,Ródenas R,Garcíamartín E,Andrés Z,Villalta I,et al. CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsisroots[J]. Plant Physiol,2015,169(4):2863-2873.
    [49] Han M,Wu W,Wu WH,Wang Y. Potassium transporter KUP7 is involved in K+,acquisition and translocation in Arabidopsis,root under K+ limited conditions[J]. Mol Plant,2016,9(3):437-446.
    [50] Horie T,Sugawara M,Okada T,Taira K,Kaothiennaka yama P,et al. Rice sodium-insensitive potassium transpor ter,OsHAK5,confers increased salt tolerance in tobacco BY2 cells[J]. J Biosci Bioeng,2011,111(3):346-356.
    [51] Rubio F,Fon M,Ródenas R,Nieves-Cordones M,Alemán F,et al. A low K+ signal is required for functional high-affinity K+ uptake through HAK5 transporters[J]. Physiol Plant,2014,152(3):558-570.
    [52] Meng S,Peng JS,He YN,Zhang GB,Yi HY,et al. ArabidopsisNRT1.5 mediates the suppression of nitrate starvation-induced leaf senescence by modulating foliar potassium level[J]. Mol Plant,2016,9(3):461-470.
    [53] Min JK,Ruzicka D,Shin R,Schachtman DP. The ArabidopsisAP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions[J]. Mol Plant,2012,5(5):1042-1057.
    [54] Laohavisit A,Shang Z,Rubio L,Cuin TA,Véry AA,et al. Arabidopsisannexin1 mediates the radical-activated plasma membrane Ca2+ and K+ permeable conductance in root cells[J]. Plant Cell,2012,24(4):1522-1533.
    [55] Jung JY,Shin R,Schachtman DP. Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis[J]. Plant Cell,2009,21(2):607-621.
    [56] Nam YJ,Tran LS,Kojima M,Sakakibara H,Nishiyama R,Shin R. Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in Arabidopsis[J]. PLoS One,2012,7(10):e47797.
    [57] Shin R,Schachtman DP. Hydrogen peroxide mediates plant root cell response to nutrient deprivation[J]. Proc Natl Acad Sci USA,2004,101(23):8827-8832.
    [58] Osakabe Y,Arinaga N,Umezawa T,Katsura S,Nagamachi K,et al. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis[J]. Plant Cell,2013,25(2):609-624.
    [59] Schachtman DP,Shin R. Nutrient sensing and signaling:NPKS[J]. Annu Rev Plant Biol,2007,58(58):47-69.
    [60] Daras G,Rigas S,Tsitsekian D,Iacovides TA,Hatzopoulos P. Potassium transporter TRH1 subunits assemble regulating root-hair elongation autonomously from the cell fate determination pathway[J]. Plant Sci,2015,231:131-137.
    [61] Kim MJ,Ciani S,Schachtman DP. A peroxidase contri butes to ROS production during Arabidopsisroot response to potassium deficiency[J]. Mol Plant,2010,3(2):420-427.
    [62] Hirabayashi J,Kawasaki H,Suzuki K,Kasai K. Identification and characterization of transcription factors regulatingArabidopsisHAK5[J]. Plant Cell Physiol,2013,54(9):1478-1490.
    [63] Zhao S,Zhang ML,Ma TL,Wang Y. Phosphorylation of ARF2 relieves its repression of transcription of the K+ transporter gene HAK5in response to low potassium stress[J]. Plant Cell,2016,28(12):3005-3019.
    [64] Liu LT,Zheng CH,Kuang BJ,Wei LQ,Yan LF,Wang T. Receptor-like kinase rupo interacts with potassium transporters to regulate pollen tube growth and integrity in rice[J]. PLoS Genetics,2016,12(7):e1006085.
    [65] Santa-María GE,Oliferuk S,Moriconi JI. KT-HAK-KUP transporters in major terrestrial photosynthetic organisms:a twenty years tale[J]. J Plant Physiol,2018,226:77-90.
    [66] Daras G,Rigas S,Tsitsekian D,Iacovides TA,Hatzopoulos P. Potassium transporter TRH1 subunits assemble regulating root-hair elongation autonomously from the cell fate determination pathway[J]. Plant Sci Nlm,2015,231:131-137.
    [67] Xia X,Fan X,Wei J,Feng H,Qu H,et al. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport[J]. J Exp Bot,2015,66(1):317-331.
计量
  • 文章访问数:  925
  • HTML全文浏览量:  18
  • PDF下载量:  1016
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-09
  • 修回日期:  2018-09-12
  • 发布日期:  2019-02-27

目录

    /

    返回文章
    返回