[1] |
Nabati J,Kafi M,Nezami A,Moghaddam PR,Ali M,Mehrjerdi MZ. Effect of salinity on biomass production and activities of some key enzymatic antioxidants in Kochia (Kochia scoparia)[J]. Pak J Bot,2011,43(1):539-548.
|
[2] |
Munns R,Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol,2008,59(1):651-681.
|
[3] |
Anschutz U,Becker D,Shabala S. Going beyond nutrition:regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment[J]. J Plant Physiol,2014,171(9):670-687.
|
[4] |
Chérel I,Lefoulon C,Boeglin M,Sentenac H. Molecular mechanisms involved in plant adaptation to low K+ availability[J]. J Exp Bot,2014,65(3):833-848.
|
[5] |
Abbasi GH,Javaid A,Anwar-ul-Haq M,Ali S. Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids[J]. Pak J Bot,2016,46(1):135-146.
|
[6] |
Abbasi H,Jamil M,Haq A,Ali S,Ahmad R,et al. Salt stress manifestation on plants,mechanism of salt tole-rance and potassium role in alleviating it:a review[J]. Zemdirbyste,2016,103(2):229-238.
|
[7] |
Epstein E. Dual pattern of ion absorption by plant cells and by plants[J]. Nature,1966,212(5068):1324-1327.
|
[8] |
Li WH,Xu GH,Alli A,Yu L. Plant HAK/KUP/KT K+ transporters:function and regulation[J]. Semin Cell Dev Biol,2018,74:133-141.
|
[9] |
Chen ZH,Newman I,Zhou MX,Mendham N,Zhang G,Shabala S. Screening plants for salt tolerance by measu-ring K+ flux:a case study for barley[J]. Plant Cell Environ,2005,28(10):1230-1246.
|
[10] |
Adams E,Shin R. Transport,signaling,and homeostasis of potassium and sodium in plants[J]. J Integr Plant Biol,2014,56(3):231-249.
|
[11] |
Tavakkoli E,Fatehi F,Coventry S,Rengasamy P,Mcdonald GK. Additive effects of Na+ and Cl- ions on barley growth under salinity stress[J]. J Exp Bot,2011,62(6):2189-2203.
|
[12] |
Shabala S,Cuin TA. Potassium transport and plant salt tolerance[J]. Physiol Plant,2008,133(4):651-669.
|
[13] |
Rodrigo-moreno A,Andrés-colás N,Poschenrieder C,Gunsé B,Penarrubia L,Shabala S. Calcium-and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips:linking copper transport with cytosolic hydroxyl radical production[J]. Plant Cell Environ,2013,36(4):844-855.
|
[14] |
Demidchik V,Cuin TA,Svistunenko D,Smith SJ,Miller AJ,et al. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals:single-channel properties,genetic basis and involvement in stress-induced cell death[J]. J Cell Sci,2010,123(9):1468-1479.
|
[15] |
Rodrigo-moreno A,Poschenrieder C,Shabala S. Transition metals:a double edge sward in ROS generation and signaling[J]. Plant Signal Behav,2013,8(3):e23421-e23425.
|
[16] |
Shabala S,Pottosin I. Regulation of potassium transport in plants under hostile conditions:implications for abiotic and biotic stress tolerance[J]. Physiol Plantarum,2014,151(3):257-279.
|
[17] |
Véry AA,Nieves-Cordones M,Daly M,Khan I,Fizames C,Sentenac H. Molecular biology of K+,transport across the plant cell membrane:what do we learn from comparison between plant species[J]. J Plant Physiol,2014,171(9):748-769.
|
[18] |
Rubio F,Santa-María GE,Rodríguez-Navarro A. Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells[J]. Physiol Plantarum,2000,109(1):34-43.
|
[19] |
Bañuelos MA,Garciadeblas B,Cubero B,RodríGuez-Navarro A. Inventory and functional characterization of the HAK potassium transporters of rice[J]. Plant Physiol,2002,130(2):784-95.
|
[20] |
Yang TY,Zhang S,Hu YB,Wu FC,Hu QD,et al. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels[J]. Plant Physiol,2014,166(2):945-959.
|
[21] |
Horie T,Sugawara M,Okada T,Taira K,Kaothiennaka-yama P,et al. Rice sodium-insensitive potassium transpor-ter,OsHAK5,confers increased salt tolerance in tobacco BY2 cells[J]. J Biosci Bioeng,2011,111(3):346-356.
|
[22] |
Takahashi R,Nishio T,Ichizen N,Takano T. High-affinity K+ transporter PhaHAK5 is expressed only in salt-sensitive reed plants and shows Na+ permeability under NaCl stress[J]. Plant Cell Rep,2007,26(9):1673-1679.
|
[23] |
Yang ZF,Gao QS,Sun CS,Li WJ,Gu SL,Xu CW. Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.)[J]. J Genet Genomics,2009,36(3):161-172.
|
[24] |
Kim EJ,Kwak JM,Uozumi N,Schroeder JI. AtKUP1:an Arabidopsis gene encoding high-affinity potassium transport activity[J]. Plant Cell,1998,10(1):51-62.
|
[25] |
Hyun TK,Rim Y,Kim E,Kim JS. Genome-wide and molecular evolution analyses of the KT/HAK/KUP family in tomato (Solanum lycopersicum L.)[J]. Genes Genom,2014,36(3):365-374.
|
[26] |
Song ZZ,Ma RJ,Yu ML. Genome-wide analysis and identification of KT/HAK/KUP potassium transporter gene family in peach (Prunus persica)[J]. Genet Mol Res,2015,14(1):774-787.
|
[27] |
晁毛妮,温玉清,张晋玉,张志勇,董洁,于亚鑫. 大豆KUP/HAK/KT钾转运体基因家族的鉴定与表达分析[J]. 西北植物学报,2017,37(2):239-241,244-249. Chao MN,Wen YQ,Zhang JY,Zhang ZY,Dong J,Yu YX. Identification and expression analysis of KUP/HAK/KT potassium transporter gene family in soybean (Glycine max(L.) Merr.)[J].Acta Botanica Boreali-Occidentalia Sinica,2017,37(2):239-241,244-249.
|
[28] |
Li Y,Peng LR,Xie CY,Shi XQ,Dong CX,et al. Genome-wide identification,characterization,and expression analyses of the HAK/KUP/KT,potassium transporter gene family reveals their involvement in K+,deficient and abiotic stress responses in pear rootstock seedlings[J]. Plant Growth Regul,2018,85(2):187-198.
|
[29] |
Ou WJ,Mao X,Huang C,Tie WW,Yan Y,et al. Genome-wide identification and expression analysis of the KUP family under abiotic stress in cassava (Manihot esculentaCrantz)[J]. Front Physiol,2018,9:17.
|
[30] |
Rubio F,Alemán F,Nievescordones M,Martínez V. Differential regulation of the genes encoding the high-affinity K+ transporters HAK5 of Thellungiella halophilaand Arabidopsis thalianain response to salinity[J]. Environ Exp Bot,2009,65(2-3):263-269.
|
[31] |
杨中敏,王艳. 盐穗木钾转运蛋白基因HcKUP12的克隆及在盐胁迫下的表达分析[J]. 植物科学学报,2015,33(4):499-506.Yang ZM,Wang Y. Cloning of potassium transporter gene (HcKUP1) from Halostachys caspicaand its expression profile under salt stress[J]. Plant Science Journal,2015,33(4):499-506.
|
[32] |
Bañuelos MA,Garciadeblas B,Cubero B,RodríGuezNavarro A. Inventory and functional characterization of the HAK potassium transporters of rice[J]. Plant Physiol,2002,130(2):784-95.
|
[33] |
Chen G,Hu QD,Luo L,Yang TY,Zhang S,et al. Rice potassium transporter OsHAK1 is essential for maintaining potassium mediated growth and functions in salt tolerance over low and high potassium concentration ranges[J]. Plant Cell Environ,2016,38(12):2747-2765.
|
[34] |
Yang T,Zhang S,Hu YB,Wu FC,Hu QB,et al. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels[J]. Plant Physiol,2014,166(2):945-959.
|
[35] |
Shen Y,Shen LK,Shen ZX,Jing W,Ge HL,et al. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice[J]. Plant Cell Environ,2015,38(12):2766-2779.
|
[36] |
Qi Z,Hampton CR,Shin R,Barkla BJ,White PJ,Schachtman DP. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis[J]. J Exp Bot,2008,59(3):595-607.
|
[37] |
Maathuis FJ. Physiological functions of mineral macronut rients[J]. Curr Opin Plant Biol,2009,12(3):250-258.
|
[38] |
Maathuis FJ. The role of monovalent cation transporters in plant responses to salinity[J]. J Exp Bot,2006,57(5):1137-1147.
|
[39] |
Takahashi R,Nishio T,Ichizen N,Takano T. High-affinity+ transporter PhaHAK5 is expressed only in salt-sensitive reed plants and shows Na+ permeability under NaCl stress[J]. Plant Cell Rep,2007,26(9):1673-1679.
|
[40] |
Liu JF,Zhang SL,Tang HL,Wu LZ,Dong LJ,et al. Overexpression of an Aeluropus littoralisParl. potassium transporter gene,AlHAK1,in cotton enhances potassium uptake and salt tolerance[J]. Euphytica,2015,203(1):197-209.
|
[41] |
Ruiz-Lau N,Bojórquez-Quintal E,Benito B,Echevarría-Machado I,Sánchez-Cach LA,et al. Molecular cloning and functional analysis of a Na+-insensitive K+ transporter of Capsicum chinenseJacq[J]. Front Plant Sci,2016,7:1980-1994.
|
[42] |
Bacha H,Ródenas R,López-Gómez E,García-Legaz MF,Nieves-Cordones M,et al. High Ca2+ reverts the repression of high-affinity K+ uptake produced by Na+ in Solanum lycopersycumL. (var. microtom) plants[J]. J Plant Physiol,2015,180:72-79.
|
[43] |
Wang Y,Wu WH. Potassium transport and signaling in higher plants[J]. Annu Rev Plant Biol,2013,64(1):451-476.
|
[44] |
Ma TL,Wu WH,Wang Y. Transcriptome analysis of rice root responses to potassium deficiency[J]. BMC Plant Biol,2012,12(1):161-174.
|
[45] |
Li L,Kim BG,Cheong YH,Pandey GK,Luan S. A Ca2+,signaling pathway regulates a K+,channel for low-K response in Arabidopsis[J]. Proc Natl Acad Sci USA,2006,103(33):12625-12630.
|
[46] |
Li J,Long Y,Qi GN,Li J,Xu ZJ,et al. The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex[J]. Plant Cell,2014,26(8):3387-3402.
|
[47] |
Liu LL,Ren HM,Chen LQ,Wang Y,Wu WH. A protein kinase CIPK9 interacts with calcium sensor CBL3 and regulates K+ homeostasis under low-K+ stress in Arabidopsis[J]. Plant Physiol,2012,161(1):266-277.
|
[48] |
Ragel P,Ródenas R,Garcíamartín E,Andrés Z,Villalta I,et al. CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsisroots[J]. Plant Physiol,2015,169(4):2863-2873.
|
[49] |
Han M,Wu W,Wu WH,Wang Y. Potassium transporter KUP7 is involved in K+,acquisition and translocation in Arabidopsis,root under K+ limited conditions[J]. Mol Plant,2016,9(3):437-446.
|
[50] |
Horie T,Sugawara M,Okada T,Taira K,Kaothiennaka yama P,et al. Rice sodium-insensitive potassium transpor ter,OsHAK5,confers increased salt tolerance in tobacco BY2 cells[J]. J Biosci Bioeng,2011,111(3):346-356.
|
[51] |
Rubio F,Fon M,Ródenas R,Nieves-Cordones M,Alemán F,et al. A low K+ signal is required for functional high-affinity K+ uptake through HAK5 transporters[J]. Physiol Plant,2014,152(3):558-570.
|
[52] |
Meng S,Peng JS,He YN,Zhang GB,Yi HY,et al. ArabidopsisNRT1.5 mediates the suppression of nitrate starvation-induced leaf senescence by modulating foliar potassium level[J]. Mol Plant,2016,9(3):461-470.
|
[53] |
Min JK,Ruzicka D,Shin R,Schachtman DP. The ArabidopsisAP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions[J]. Mol Plant,2012,5(5):1042-1057.
|
[54] |
Laohavisit A,Shang Z,Rubio L,Cuin TA,Véry AA,et al. Arabidopsisannexin1 mediates the radical-activated plasma membrane Ca2+ and K+ permeable conductance in root cells[J]. Plant Cell,2012,24(4):1522-1533.
|
[55] |
Jung JY,Shin R,Schachtman DP. Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis[J]. Plant Cell,2009,21(2):607-621.
|
[56] |
Nam YJ,Tran LS,Kojima M,Sakakibara H,Nishiyama R,Shin R. Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in Arabidopsis[J]. PLoS One,2012,7(10):e47797.
|
[57] |
Shin R,Schachtman DP. Hydrogen peroxide mediates plant root cell response to nutrient deprivation[J]. Proc Natl Acad Sci USA,2004,101(23):8827-8832.
|
[58] |
Osakabe Y,Arinaga N,Umezawa T,Katsura S,Nagamachi K,et al. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis[J]. Plant Cell,2013,25(2):609-624.
|
[59] |
Schachtman DP,Shin R. Nutrient sensing and signaling:NPKS[J]. Annu Rev Plant Biol,2007,58(58):47-69.
|
[60] |
Daras G,Rigas S,Tsitsekian D,Iacovides TA,Hatzopoulos P. Potassium transporter TRH1 subunits assemble regulating root-hair elongation autonomously from the cell fate determination pathway[J]. Plant Sci,2015,231:131-137.
|
[61] |
Kim MJ,Ciani S,Schachtman DP. A peroxidase contri butes to ROS production during Arabidopsisroot response to potassium deficiency[J]. Mol Plant,2010,3(2):420-427.
|
[62] |
Hirabayashi J,Kawasaki H,Suzuki K,Kasai K. Identification and characterization of transcription factors regulatingArabidopsisHAK5[J]. Plant Cell Physiol,2013,54(9):1478-1490.
|
[63] |
Zhao S,Zhang ML,Ma TL,Wang Y. Phosphorylation of ARF2 relieves its repression of transcription of the K+ transporter gene HAK5in response to low potassium stress[J]. Plant Cell,2016,28(12):3005-3019.
|
[64] |
Liu LT,Zheng CH,Kuang BJ,Wei LQ,Yan LF,Wang T. Receptor-like kinase rupo interacts with potassium transporters to regulate pollen tube growth and integrity in rice[J]. PLoS Genetics,2016,12(7):e1006085.
|
[65] |
Santa-María GE,Oliferuk S,Moriconi JI. KT-HAK-KUP transporters in major terrestrial photosynthetic organisms:a twenty years tale[J]. J Plant Physiol,2018,226:77-90.
|
[66] |
Daras G,Rigas S,Tsitsekian D,Iacovides TA,Hatzopoulos P. Potassium transporter TRH1 subunits assemble regulating root-hair elongation autonomously from the cell fate determination pathway[J]. Plant Sci Nlm,2015,231:131-137.
|
[67] |
Xia X,Fan X,Wei J,Feng H,Qu H,et al. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport[J]. J Exp Bot,2015,66(1):317-331.
|