高级检索+

机械损伤对9种水生植物叶片的影响

潘俊峰, 王博, 李丁玉, 冯旗, 郭牧语, 李璐, 卢虹羽, 佘丹, 余耀文, 赵天铭, 操瑜

潘俊峰, 王博, 李丁玉, 冯旗, 郭牧语, 李璐, 卢虹羽, 佘丹, 余耀文, 赵天铭, 操瑜. 机械损伤对9种水生植物叶片的影响[J]. 植物科学学报, 2019, 37(2): 230-239. DOI: 10.11913/PSJ.2095-0837.2019.20230
引用本文: 潘俊峰, 王博, 李丁玉, 冯旗, 郭牧语, 李璐, 卢虹羽, 佘丹, 余耀文, 赵天铭, 操瑜. 机械损伤对9种水生植物叶片的影响[J]. 植物科学学报, 2019, 37(2): 230-239. DOI: 10.11913/PSJ.2095-0837.2019.20230
Pan Jun-Feng, Wang Bo, Li Ding-Yu, Feng Qi, Guo Mu-Yu, Li Lu, Lu Hong-Yu, She Dan, Yu Yao-Wen, Zhao Tian-Ming, Cao Yu. Effects of mechanical damage on leaf veins of nine aquatic plants[J]. Plant Science Journal, 2019, 37(2): 230-239. DOI: 10.11913/PSJ.2095-0837.2019.20230
Citation: Pan Jun-Feng, Wang Bo, Li Ding-Yu, Feng Qi, Guo Mu-Yu, Li Lu, Lu Hong-Yu, She Dan, Yu Yao-Wen, Zhao Tian-Ming, Cao Yu. Effects of mechanical damage on leaf veins of nine aquatic plants[J]. Plant Science Journal, 2019, 37(2): 230-239. DOI: 10.11913/PSJ.2095-0837.2019.20230
潘俊峰, 王博, 李丁玉, 冯旗, 郭牧语, 李璐, 卢虹羽, 佘丹, 余耀文, 赵天铭, 操瑜. 机械损伤对9种水生植物叶片的影响[J]. 植物科学学报, 2019, 37(2): 230-239. CSTR: 32231.14.PSJ.2095-0837.2019.20230
引用本文: 潘俊峰, 王博, 李丁玉, 冯旗, 郭牧语, 李璐, 卢虹羽, 佘丹, 余耀文, 赵天铭, 操瑜. 机械损伤对9种水生植物叶片的影响[J]. 植物科学学报, 2019, 37(2): 230-239. CSTR: 32231.14.PSJ.2095-0837.2019.20230
Pan Jun-Feng, Wang Bo, Li Ding-Yu, Feng Qi, Guo Mu-Yu, Li Lu, Lu Hong-Yu, She Dan, Yu Yao-Wen, Zhao Tian-Ming, Cao Yu. Effects of mechanical damage on leaf veins of nine aquatic plants[J]. Plant Science Journal, 2019, 37(2): 230-239. CSTR: 32231.14.PSJ.2095-0837.2019.20230
Citation: Pan Jun-Feng, Wang Bo, Li Ding-Yu, Feng Qi, Guo Mu-Yu, Li Lu, Lu Hong-Yu, She Dan, Yu Yao-Wen, Zhao Tian-Ming, Cao Yu. Effects of mechanical damage on leaf veins of nine aquatic plants[J]. Plant Science Journal, 2019, 37(2): 230-239. CSTR: 32231.14.PSJ.2095-0837.2019.20230

机械损伤对9种水生植物叶片的影响

基金项目: 

国家自然科学基金项目(31870345);中国科学院大学生创新实践计划项目。

详细信息
    作者简介:

    潘俊峰(1986-),男,助理研究员,研究方向为水生植物的收集、保育及资源化利用(E-mail:panjfaau@163.com)。

    通讯作者:

    操瑜,E-mail:caoyu@wbgcas.cn

  • 中图分类号: Q945

Effects of mechanical damage on leaf veins of nine aquatic plants

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31870345) and Innovation Practice Program of CAS Students.

  • 摘要: 水生植物叶片的功能性状特征与陆生植物有所不同,同时叶脉类型也显著影响叶片的功能性状。本研究选取9种具有不同叶脉类型的水生植物,通过对叶脉进行直接损伤,分析叶片性状(形态、色素含量和叶绿素荧光指标)在叶脉受损后的变化程度与叶脉类型的关系。结果显示:具有平行脉的3种水生植物对叶脉损伤具有较强的耐受性;具羽状脉的4种植物主脉受损后显著抑制叶片生长,而侧脉受损的影响在不同物种间有所不同,具有物种特异性。本研究可为大型湖泊水生植物修复的水生物种筛选提供参考。
    Abstract: Aquatic plants are important primary producers in the littoral zone of lakes and wetlands. As aquatic plants have a close relationship with the aquatic environment, their leaves usually do not need to adapt to water shortages in the soil. Therefore, the leaf traits of aquatic plants are likely to be different from those of terrestrial plants. In addition, leaf vein type is the fundamental basis of leaf functional traits; however, previous studies on leaf vein types and functional traits have not yet been conducted for aquatic plants. In this study, nine aquatic plants with different vein type were selected to analyze the relationship between the changes in leaf traits (e.g., morphology, pigment content, and chlorophyll fluorescence) and vein type after vein cutting. Results showed that the three species with parallel veins exhibited strong tolerance to the main vein cut, whereas the four species with pinnate veins demonstrated significantly reduced pigment content and inhibited leaf growth following the main vein cut. In contrast, the side vein cuts had distinct effects on different species, indicating species-specific effects. Based on leaf vein type, this study provides theoretical guidance for species selection in the re-establishment of aquatic plants in the littoral zone of large lakes.
  • [1]

    Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E. Alternative equilibria in shallow lakes[J]. Trends Ecol Evol, 1993, 8(8):275-279.

    [2]

    Jeppesen E, Sondergaard M, Søndergaard M,Christofferson K. The Structuring Role of Submerged Macrophytes in Lakes[M]. New York:Springer-Verlag, 1998.

    [3]

    Krull JN. Aquatic plant-macroinvertebrate associations and waterfowl[J]. J Wildlife Manage, 1970, 34(4):707.

    [4]

    He Y, Rui H, Chen C, Chen Y, Shen Z. The role of roots in the accumulation and removal of cadmium by the aquatic plant Hydrilla verticillata[J]. Environ Sci Pollut R, 2016, 23(13):13308-13316.

    [5]

    Veisberg EI. Species structure of plant groupings in the shallow coastal zone of piedmont lake Bolshoe Miassovo (Southern Urals)[J]. Inland Water Biol, 2017, 10(3):275-285.

    [6] 李伟. 富营养化湖泊水生植物群落恢复重建的理论与方法[J]. 水生态学杂志, 2008, 1(1):813. Li W. Theory and methodology of aquatic plant community restoration in eutrophicated lakes[J]. Journal of Hydroecology, 2008, 1(1):8-13.
    [7]

    Doyle RD. Effects of waves on the early growth of Vallisneria americana[J]. Freshwater Biol, 2010, 46(3):389-397.

    [8]

    Marco-Méndez C, Prado P, Ferrero-Vicentelm, Ibáñez C, Sánchez-Lizaso JL. Seasonal effects of waterfowl grazing on submerged macrophytes:The role of flowers[J]. Ann Bot, 2015, 120(B):275-282.

    [9]

    Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827.

    [10] 刘洋, 付文龙, 操瑜, 李伟. 沉水植物功能性状研究的思考[J]. 植物科学学报, 2017, 35(3):444-451.

    Liu Y, Fu WL, Cao Y, Li W. Study on the functional traits of submerged macrophytes[J]. Plant Science Journal, 2017, 35(3):444-451.

    [11]

    Westoby M. A leaf-height-seed (LHS) plant ecology stra-tegy scheme[J]. Plant Soil, 1998, 199(2):213-227.

    [12]

    Klimešová J, Tackenberg O, Herben T. Herbs are diffe-rent:clonal and bud bank traits can matter more than leaf-height-seed traits[J].New Phytol, 2016, 210(1):13-17.

    [13]

    Fu H, Yuan GX, Lou Q, Dai TT, Xu J, et al. Functional traits mediated cascading effects of water depth and light availability on temporal stability of a macrophyte species[J]. Ecol Indic, 2018, 89:168-174.

    [14] 李乐, 曾辉, 郭大立. 叶脉网络功能性状及其生态学意义[J]. 植物生态学报, 2013, 37(7):691-698.

    Li L, Zeng H, and Guo DL. Leaf venation functional traits and their ecological significance[J]. China Journal of Plant Ecology, 2013, 37(7):691-698.

    [15]

    Holloway-Phillips M, Cernusak LA, Barbour M, Song X, Cheesman A, et al. Leaf vein fraction influences the Péclet effect and 18O enrichment in leaf water[J]. Plant Cell Environ, 2016, 39(11):2414-2427.

    [16]

    Yu CH, Chen ZL. Leaf Architecture of the Woody Dicotyledons From Tropical and Subtropical China[M]. Beijing:International Academic Publishers, 1991.

    [17]

    Blonder B, Violle C, Bentley LP, Enquist BJ. Venation networks and the origin of the leaf economics spectrum[J]. Ecol Lett, 2011, 14(2):91-100.

    [18]

    Sack L, Scoffoni C, Mckown AD, Frole K, Rawls M, et al. Developmentally based scaling of leaf venation architecture explains global ecological patterns[J]. Nat Commun, 2012, 3:837.

    [19] 喻诚鸿, 陈泽濂. 华南木本双子叶植物叶宏观结构资料Ⅰ. 术语与方法[J]. 中国科学院华南植物研究所集刊, 1986, 2:83-97.
    [20]

    Zhi Y, Cao Y, Sun J, Li W, Jeppesen E. Indirect effects of extreme precipitation on the growth of vallisneria denseserrulata makino[J]. Environ Exp Bot, 2018, 153:229-235.

    [21] 黄祥飞. 湖泊生态调查观测与分析[M]. 北京:中国标准出版社, 1999.
    [22]

    Sack L, Dietrich EM, Streeter CM, Sánchezgómez D, Holbrook NM. Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption[J]. Proc Natl Acad Sci USA, 2008, 105(5):1567-1572.

    [23]

    Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H. Evolution and function of leaf venation architecture:a review[J]. Ann Bot, 2001, 87(5):553-566.

    [24]

    Blonder B, Violle C, Bentley LP, Enquist BJ. Venation networks and the origin of the leaf economics spectrum[J]. Ecol Lett, 2011, 14(2):91-100.

  • 期刊类型引用(7)

    1. 李锦超,董俊美,贾凯旋,孟义江,杨太新,侯孟泽,葛淑俊. 基于山药转录组测序的EST-SSR信息分析及分子标记开发. 分子植物育种. 2025(04): 1269-1277 . 百度学术
    2. 郑永杰,廖枝锋,刘新亮,张月婷,涂白连,伍艳芳. 基于转录组测序的浙江楠EST-SSR分子标记开发. 南方林业科学. 2024(05): 8-12 . 百度学术
    3. 周元杰,冯源恒,吴东山,聂海泉,刘海梅,杨章旗. 大叶栎SSR引物开发及育种群体指纹图谱构建. 基因组学与应用生物学. 2024(Z1): 1521-1532 . 百度学术
    4. 李辉,冯源恒,唐生森,杨章旗. 基于转录组测序的枫香EST-SSR引物开发及有效性评价. 广西植物. 2023(02): 327-335 . 百度学术
    5. 娄永峰,甘然,朱成磊,肖复明,高志民. 黄秆乌哺鸡竹转录组EST-SSR分子标记开发与应用. 植物科学学报. 2022(03): 355-364 . 本站查看
    6. 李浩铭,何庆海,余著成,石从广,诸葛菲,王梅芳,李因刚. 不同基质配比对伯乐树幼苗生长与生理特性的影响. 浙江林业科技. 2022(06): 87-93 . 百度学术
    7. 柳娟,岳春雷,朱弘,李贺鹏,李海波. 日本荚蒾转录组SSR位点分析及多态性SSR标记开发. 分子植物育种. 2022(21): 7183-7192 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  992
  • HTML全文浏览量:  4
  • PDF下载量:  697
  • 被引次数: 8
出版历程
  • 收稿日期:  2018-10-04
  • 修回日期:  2018-11-13
  • 网络出版日期:  2022-10-31
  • 发布日期:  2019-04-27

目录

    /

    返回文章
    返回