Cloning, expression, and bioinformatics analysis of the chitinase gene PlCHI in Picea likiangensis var. balfouriana
-
摘要: 以川西云杉(Picea likiangensis var.balfouriana(Rehd.et Wils.)Hillier ex Slsvin)为材料,利用RT-PCR技术,克隆获得几丁质酶基因PlCHI的cDNA全长序列,并对该基因的序列特征及基因表达情况进行分析。结果显示,PlCHI的开放阅读框长1017 bp,共编码338个氨基酸;蛋白序列结构域分析结果表明,PlCHI为ClassⅠ类几丁质酶,属19家族,兼具溶菌酶活性;该序列与其他植物几丁质酶的蛋白序列相似性较高。系统发育分析结果显示,川西云杉PlCHI序列与北美云杉(Picea sitchensis(Bong.)Corr.)、黑松(Pinus thunbergii Parl.)等松科植物亲缘关系最近。进一步将PlCHI重组质粒转入大肠杆菌BL21(DE3)中,表达出约45 kD的蛋白,主要以包涵体形式存在,且在25℃下采用0.2 mmol/L的IPTG诱导4 h时蛋白的表达量最佳。Abstract: The full-length cDNA of the chitinase gene PlCHI was cloned from Picea likiangensis var. balfouriana (Rehd. et Wils.) Hillier ex Slsvin by RT-PCR, with sequence characteristics and gene expression levels then analyzed. Results showed that the open reading frame of PlCHI was 1017 bp in length and encoded a protein with 338 amino acids. Protein sequence domain analysis indicated that PlCHI was a class Ⅰ chitinase that belonged to the 19 family and exhibited lysozyme activity. The sequence of PlCHI had high similarity to the protein sequences of other plant chitinases. Phylogenetic analysis showed that the PlCHI sequence was closely related to Pinaceae plants such as Picea sitchensis (Bong.) Corr. and Pinus thunbergii Parl. In this study, we further transferred the PlCHI recombinant plasmid into E. coli BL21 (DE3) to express a protein of about 45 kD, which was mainly in the form of an inclusion body. The optimal expression conditions of the gene were 0.2 mmol/L IPTG at 25℃ for 4 h induction.
-
-
[1] Zhang JY, Guo ZR, Qu SC, Zhang Z. Identification and molecular characterization of a classⅠ chitinase gene (Mhchit1) from Malus hupehensis[J]. Plant Mol Biol Rep, 2012, 30(3):760-767.
[2] Graca I, Liang JS, Guilherme M, Tavares P, Ferreira-Pinto MM, et al. Cloning, overexpression and functional characterization of a classⅢ chitinase from Casuarina glauca nodules[J]. Symbiosis, 2016, 70(1-3):139-148.
[3] 蒋选利, 李振岐, 康振生, 闫海林. 几丁质酶与植物的抗病性[J]. 西北农业学报, 2002, 11(3):71-75. Jiang XL, Li ZQ, Kang ZS, Yan HL. Chitinase and plant disease resistance[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2002, 11(3):71-75.
[4] 苟艳, 谢天, 蒲莉, 王刚刚. 解淀粉芽孢杆菌MY001菌株对几丁质的降解及对芦笋茎枯病菌的拮抗作用[J]. 应用与环境生态学报, 2018, 24(6):1318-1323. Gou Y, Xie T, Pu L, Wang GG. The degradation of Chitin and antagonism on Phomopsis aspasagi by Bacillus amyloliquefaciens MY001[J]. Chinese Journal of Applied & Environmental Biology, 2018, 24(6):1318-1323.
[5] He X, Miyasaka SC, Fitch MM, Moore PH, Zhu YJ. Agrobacterium tumefaciens-mediated transformation of taro (Colocasia esculenta (L.) Schott) with a rice chitinase gene for improved tolerance to a fungal pathogen Sclero-tium rolfsii[J]. Plant Cell Rep, 2008, 27(5):903-909.
[6] 罗晶晶, 张仁英, 齐晓花, 徐强, 陈学好. 黄瓜几丁质酶基因克隆及与白粉病抗性关系的初步研究[J]. 分子植物育种, 2015, 13(7):1584-1591. Luo JJ, Zhang RY, Qi XH, Xu Q, Chen XH. A preliminary study on cloning of chitinase gene and relationships to resistance of powdery mildew in cucumber (Cucumis sativus L.)[J]. Molecular Plant Breeding, 2015, 13(7):1584-1591.
[7] Samac DA, Shah DM. Developmental and pathogen-induced activation of the Arabidopsis acidic chitinase promoter[J]. Plant Cell, 1991, 3(10):1063-1072.
[8] Dong S, Tredway LP, Shew HD, Wang GL, Sivamani E, et al. Resistance of transgenic tall fescue to two major fungal diseases[J]. Plant Sci, 2007, 173(5):501-509.
[9] Broglie KE, Gaynor JJ, Broglie RM. Ethylene-regulated gene expression:Molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris[J]. Proc Natl Acad Sci USA, 1986, 83(18):6820-6824.
[10] Park SM, Kim DH, Truong NH, Itoh Y. Heterologous expression and characterization of classⅢ chitinases from rice (Oryza sativa L.)[J]. Enzyme Microb Tech, 2002, 30(6):697-702.
[11] Rao DH, Gowda LR. Abundant classⅢ acidic chitinase homologue in tamarind (Tamarindus indica) seed serves as the major storage protein[J]. J Agric Food Chem, 2008, 56(6):2175-2182.
[12] Lin SY, Kwan HS. Effect of chitinase on resistance to fungal pathogens in sea buckthorn, Hippophae rhamnoides, and cloning of classⅠ andⅢ chitinase genes[J]. Biochem Genet, 2012, 50(7-8):600-615.
[13] Tohidfar M, Mohammadi M, Ghareyazie B. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene[J]. Plant Cell Tissue Org Cult, 2005, 83(1):83-96.
[14] Liu ZH, Wang YC, Qi XT, Yang CP. Cloning and characterization of a chitinase geneLbchi31 from Limonium bico-lor and identification of its biological activity[J]. Mol Biol Rep, 2010, 37(5):2447-2453.
[15] Ye XY, Ng TB. A chitinase with antifungal activity from the mung bean[J].Protein Expr Purif, 2005, 40(2):230-236.
[16] Khan A, Nasir IA, Tabassum B, Aaliya K, Tariq M, et al. Expression studies of chitinase gene in transgenic potato against Alternaria solani[J]. Plant Cell Tiss Organ Cult, 2017, 128(3):563-576.
[17] Moradyar M, Motallcbi M, Zamani MR, Aghazadeh R. Pathogen-induced expression of chimeric chitinase gene containing synthetic promoter confers antifungal resistance in transgenic canola[J]. In Vitro Cell Dev Biol Plant, 2016, 52(2):119-129.
[18] Rajesh T, Maruthaslam S, Kalpana K, Poovannan K, Kumar KK. Stability of sheath blight resistance in transgenic ASD16 rice lines expressing a ricechi11 gene encoding chitinase[J]. Biol Plantarum, 2016, 60(4):749-756.
[19] Pirttil AM, Laukkanen H, Hohtola A. Chitinase production in pine callus (Pinus sylvestris L.):a defense reaction against endophytes?[J].Planta, 2002, 214(6):848-852.
[20] Liu JJ, Chan D, Sturrock R, Sniezko RA. Genetic variation and population differentiation of the endochitinase gene family in Pinus monticola[J]. Plant Syst Evol, 2014, 300(6):1313-1322.
[21] Kozlowski G, Metraux JP. Infection of Norway spruce (Picea abies (L.) Karst.) seedlings with Pythium irregulare Buism. and Pythium ultimum Trow:histological and biochemical responses[J]. Eur J Plant Path, 1998, 104(3):225-234.
[22] Asiegbu FO, Daniel G, Johansson M. Defense related reactions of seedling roots of Norway spruce to infection by Heterobasidion annosum (Fr.) Bref[J]. Physiol Mol Plant Pathol, 1994, 45(1):1-19.
[23] Johnk N, Hietala AM, Fossdal CG, Collinge DB, Newman MA. Defense-related genes expressed in Norway spruce roots after infection with the root rot pathogen Ceratobasidium bicorne (anamorph:Rhizoctonia sp.)[J]. Tree Physiol, 2005, 25(12):1533-1543.
[24] 刘裕峰, 朱天辉, 刘应高, 李姝江, 龙旭梅, 等. 板栗咖啡酸氧甲基转移酶基因CmCOMT的克隆及原核表达[J]. 西北植物学报, 2017, 37(12):2332-2341. Liu YF, Zhu TH, Liu YG, Li SJ, Long XM, et al. Cloning and prokaryotic expression of caffeic acid o-methyltransferase gene CmCOMT from Castanea mollissima Bl[J]. Acta Botanica Boreali-occidentalia Sinca, 2017, 37(12):2332-2341.
[25] 朱晨, 张舒婷, 常笑君, 赵姗姗, 王仲, 等. 茶树几丁质酶基因的克隆及其在干旱胁迫下的表达分析[J]. 热带作物学报, 2017, 30(5):894-902. Zhu C, Zhang ST, Chang XJ, Zhao SS, Wang Z, et al. Cloning and its expression analysis of chitinase under drought stress in Camellia sinensis[J]. Chinese Journal of Tropical Crops, 2017, 30(5):894-902.
[26] Yeoh KA, Othman A, Meon S, Abdullah F, Ho CL. Sequence analysis and gene expression of putative oil palm chitinase and chitinase-like proteins in response to colonization of Ganoderma boninense and Trichoderma harzianum[J]. Mol Biol Rep, 2013, 40(1):147-158.
[27] Kang JN, Kang HJ, Sun HJ, Kwon YI, Yang DH, et al. Molecular cloning and characterization of chitinase genes from zoysiagrass (Zoysia Japonica Steud.)[J]. Plant Biotechnol Rep, 2016, 10(3):171-183.
[28] Pulla RK, Lee OR, In JG, Parvin S, Kim YJ, et al. Identification and characterization of classⅠ chitinase in Panax ginseng C. A. Meyer[J]. Mol Biol Rep, 2011, 38(1):95-102.
[29] Takashima T, Ohnuma T, Fukamizo T. NMR assignments and ligand-binding studies on a two-domain family GH19 chitinase allergen from Japanese cedar (Cryptomeria japonica) pollen[J]. Biomol NMR Assign, 2017, 11(1):85-90.
[30] Oelofse D, Gazendam I, Veale A, Tchatchou AD, Berger D. Functional characterization of a defense-related class-Ⅲ chitinase promoter from Lupinus albus, active in legume and monocot tissues[J]. Eur J Plant Pathol, 2016, 146(4):923-936.
[31] Kitaoku Y, Umemoto N, OhnumaT, Numata T, Taira T, et al. A classⅢ chitinase without disulfide bonds from the fern, Pteris ryukyuensis:crystal structure and ligand-binding studies[J]. Planta, 2015, 242(4):895-907.
[32] Chandra S, Dutta AK, Chandrashekara NK, Acharya K. In silico characterization, homology modeling of Camellia sinensis chitinase and its evolutionary analyses with other plant chitinases[J]. Proc Natl Acad Sci India B, 2017, 87(3):685-695.
[33] Robert N, Roche K, Lebeau Y, Breda C, Boulay M, et al. Expression of grapevine chitinase genes in berries and leaves infected by fungal or bacterial pathogens[J]. Plant Sci, 2002, 162(3):389-400.
[34] Singh HR, Deka M, Das S. Enhanced resistance to blister blight in transgenic tea (Camellia sinensis (L.) O. Kuntze) by overexpression of classⅠ chitinase gene from potato (Solanum tuberosum)[J]. Funct Integr Genomics, 2015, 15(4):461-480.
[35] 程笑笑, 冯自力, 冯鸿杰, 赵丽红, 师勇强, 等. 真菌源几丁质酶在植物抗真菌病害中的应用[J]. 植物保护, 2017, 43(3):29-35. Chen XX, Feng ZL, Feng HJ, Zhao LH, Shi YQ, et al. Applications of fungal chitinase in the fungal disease-resistant plants[J]. Plant Protection, 2017, 43(3):29-35.
[36] Li DM, Staehelin C, Wang WT, Peng SL. Molecular cloning and characterization of a chitinase-homologous gene from Mikania micrantha infected by Cuscuta campestris[J]. Plant Mol Biol Rep, 2010, 28(1):90-101.
[37] Landim PGC, Correia TO, Silva FDA, Nepomuceno DR, Costa HPS, et al. Production in Pichia pastoris, antifungal activity and crystal structure of a classⅠ chitinase from cowpea (Vigna unguiculata):Insights into sugar binding mode and hydrolytic action[J]. Biochimie, 2017, 135:89-103.
[38] Oneda H, Inouye K. Refolding and recovery of recombinant human matrix metalloproteinase 7(matrilysin) from inclusion bodies expressed by Escherichia coli[J]. J Biochem, 1999, 126(5):905-911.
[39] Singh A, Kirubakaran SI, Sakthivel N. Heterologous expression of new antifungal chitinase from wheat[J]. Protein Expres Purif, 2007, 56(1):100-109.
-
期刊类型引用(9)
1. 王珺瑶,李艳艳,郑祥源,张志铭,钱建强,赵勇. 施氮下接种丛枝菌根真菌对太行山南麓典型灌木荆条生长性状的影响. 内蒙古大学学报(自然科学版). 2024(01): 74-81 . 百度学术
2. 林玲,张孟文,陈飞飞,黄川腾,董晓娜,陈琳. 国家二级保护植物降香黄檀繁育技术研究进展. 山西农业大学学报(自然科学版). 2024(02): 1-9 . 百度学术
3. 李大东,王海波,杨帆,苗灵凤,张娟,郭璐瑶,向丽珊. 富营养化水体水淹和水淹后干旱对降香黄檀生理生态的影响. 热带亚热带植物学报. 2024(05): 651-659 . 百度学术
4. 杜旭龙,蔡世锋,罗素珍,刘源豪,裴蕴,黄锦学,杨智杰,熊德成. 增温对林木生物量及其分配特征影响的研究进展. 生态学杂志. 2024(10): 3180-3190 . 百度学术
5. 李昀奕,郑矜,严晓艳,李霜,罗林,童晋,赵春章. 云杉和华西箭竹叶际与根际细菌群落对增温的响应. 植物生态学报. 2024(12): 1692-1707 . 百度学术
6. 于鑫磊,苑俊风,刘冬伟,陈金辉,闫巧玲. 野外土壤增温对胡桃楸幼苗生长和生理特性的影响. 应用生态学报. 2023(01): 11-17 . 百度学术
7. 易红芳. 不同施氮水平对云杉幼苗生长及生理特性的影响. 乡村科技. 2023(08): 145-147 . 百度学术
8. 李丽君,苗灵凤,李大东,杨帆. 干旱、施氮对降香黄檀-橡胶树幼苗生长和叶绿素荧光特性的影响. 植物科学学报. 2023(03): 358-369 . 本站查看
9. 姬建波,何禾,宋晓伟,谢晓蓉,杨宗德. 臭氧胁迫对两种榕树幼苗BVOCs释放的短期影响. 热带生物学报. 2023(06): 602-613 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 648
- HTML全文浏览量: 3
- PDF下载量: 379
- 被引次数: 13