高级检索+

干旱、施氮对降香黄檀 - 橡胶树幼苗生长和叶绿素荧光特性的影响

李丽君, 苗灵凤, 李大东, 杨帆

李丽君,苗灵凤,李大东,杨帆. 干旱、施氮对降香黄檀 - 橡胶树幼苗生长和叶绿素荧光特性的影响[J]. 植物科学学报,2023,41(3):358−369. DOI: 10.11913/PSJ.2095-0837.22196
引用本文: 李丽君,苗灵凤,李大东,杨帆. 干旱、施氮对降香黄檀 - 橡胶树幼苗生长和叶绿素荧光特性的影响[J]. 植物科学学报,2023,41(3):358−369. DOI: 10.11913/PSJ.2095-0837.22196
Li LJ,Miao LF,Li DD,Yang F. Effects of drought and nitrogen application on the growth and chlorophyll fluorescence characteristics of Dalbergia odorifera T. Chen - Hevea brasiliensis Muell. Arg seedlings[J]. Plant Science Journal,2023,41(3):358−369. DOI: 10.11913/PSJ.2095-0837.22196
Citation: Li LJ,Miao LF,Li DD,Yang F. Effects of drought and nitrogen application on the growth and chlorophyll fluorescence characteristics of Dalbergia odorifera T. Chen - Hevea brasiliensis Muell. Arg seedlings[J]. Plant Science Journal,2023,41(3):358−369. DOI: 10.11913/PSJ.2095-0837.22196
李丽君,苗灵凤,李大东,杨帆. 干旱、施氮对降香黄檀 - 橡胶树幼苗生长和叶绿素荧光特性的影响[J]. 植物科学学报,2023,41(3):358−369. CSTR: 32231.14.PSJ.2095-0837.22196
引用本文: 李丽君,苗灵凤,李大东,杨帆. 干旱、施氮对降香黄檀 - 橡胶树幼苗生长和叶绿素荧光特性的影响[J]. 植物科学学报,2023,41(3):358−369. CSTR: 32231.14.PSJ.2095-0837.22196
Li LJ,Miao LF,Li DD,Yang F. Effects of drought and nitrogen application on the growth and chlorophyll fluorescence characteristics of Dalbergia odorifera T. Chen - Hevea brasiliensis Muell. Arg seedlings[J]. Plant Science Journal,2023,41(3):358−369. CSTR: 32231.14.PSJ.2095-0837.22196
Citation: Li LJ,Miao LF,Li DD,Yang F. Effects of drought and nitrogen application on the growth and chlorophyll fluorescence characteristics of Dalbergia odorifera T. Chen - Hevea brasiliensis Muell. Arg seedlings[J]. Plant Science Journal,2023,41(3):358−369. CSTR: 32231.14.PSJ.2095-0837.22196

干旱、施氮对降香黄檀 - 橡胶树幼苗生长和叶绿素荧光特性的影响

基金项目: 海南省自然科学基金项目(320RC507,421QN192,322RC578)
详细信息
    作者简介:

    李丽君(1998−),女,硕士研究生,研究方向植物生理生态(E-mail:1524841472@qq.com

    通讯作者:

    杨帆: E-mail:yangfan@hainanu.edu.cn; fanyangmlf6303@163.com

  • 中图分类号: Q945.3

Effects of drought and nitrogen application on the growth and chlorophyll fluorescence characteristics of Dalbergia odorifera T. Chen - Hevea brasiliensis Muell. Arg seedlings

Funds: This work was supported by grants from the Hainan Provincial Natural Science Foundation of China (320RC507, 421QN192, 322RC578)
  • 摘要:

    以降香黄檀(Dalbergia odorifera T. Chen)和橡胶树(Hevea brasiliensis Muell. Arg)为研究材料,探究干旱、施氮联合处理对幼苗生长、叶绿素荧光特性及两者互作效应的影响。结果显示,同一氮素水平下,干旱胁迫显著提高了幼苗的初始荧光(Fo)和非光化学猝灭系数(NPQ),但降低了株高增量、基径、叶长、总叶绿素含量、PSⅡ潜在活性(Fv / Fo)、PSⅡ最大光化学效率(Fv / Fm)和电子传递速率(ETR)。同一水分水平下,施氮处理组植株有更好的生长态势,且对降香黄檀的促进作用强于橡胶树;干旱与施氮联合处理显著影响降香黄檀的分支数和橡胶树的株高增量、叶柄长、叶绿素a含量、总叶绿素含量及类胡萝卜素含量。混栽对降香黄檀和湿润条件下的橡胶树有促进作用,但在干旱条件下降香黄檀显著抑制橡胶树的生长和光合性能。研究结果表明施氮可减轻干旱胁迫对两树种的不利影响,且均在施氮湿润处理组下具有最佳的生长、光合色素积累状况。此外,土壤水分变化改变了降香黄檀-橡胶树的互作效应。

    Abstract:

    Dalbergia odorifera T. Chen and Hevea brasiliensis Muell. Arg were used to explore the effects of drought and nitrogen application on the growth, chlorophyll fluorescence characteristics, and interaction effects of the seedlings. Results showed that under the same nitrogen level, drought stress significantly increased the fluorescence parameters Fo and NPQ of the seedlings, but decreased plant height, basal diameter, leaf length, total chlorophyll, Fv/Fo, Fv/Fm, and ETR. Under the same water level, plants in the nitrogen application group exhibited better growth performance, and the promotion effects on D. odorifera were stronger than that on H. brasiliensis. Combined drought treatment and nitrogen application significantly affected the number of branches in D. odorifera and plant height increment, petiole length, chlorophyll a content, total chlorophyll content, and carotenoid content in H. brasiliensis. Mixed planting promoted the growth and development of D. odorifera and H. brasiliensis under humid conditions, while D. odorifera significantly inhibited the growth and photosynthetic performance of H. brasiliensis under drought conditions. These results showed that nitrogen application could alleviate the adverse effects of drought stress on the two species, and plant growth and photosynthetic pigment accumulation showed the best performance under nitrogen application in well-water. In addition, variations in soil moisture could change the interaction effects between D. odorifera and H. brasiliensis.

  • 土壤水分和氮素对植物的生长发育有重要影响[1],尤其是在树木的幼苗生长阶段。受气候变暖影响,预计到本世纪末全球干旱区面积将继续扩大5.8 × 106 km2,约占陆地总面积的一半以上[2]。因此,未来植物必将受到干旱胁迫的严重影响。研究发现,干旱胁迫不仅会改变植物的形态结构,破坏叶绿体结构和功能,还会扰乱正常的光合生理及代谢活动,从而抑制植株生长[3-6]。另外,作为全球气候变化领域的另一个研究热点,氮沉降在全球范围内呈上升趋势[7],预计到本世纪50年代全球氮沉降量将增加一倍[8]。研究表明,氮素的适量增加能够通过促进光合色素的合成来提高植物光合速率[9, 10]。然而,植物在野外环境中常受多种环境因子的共同作用。如Xiong等[11]和Zhang等[12]发现,土壤氮素水平的提高可与干旱胁迫产生拮抗作用,进而缓解水分胁迫对植物的不利影响。然而也有研究发现,水氮耦合会产生协同作用,进一步加剧对植物的伤害[13]。但目前关于水氮耦合对植物生长发育、光合系统影响的研究大都集中在暖温带单生草本或灌木植物[14-16],对热带混生木本植物影响的研究还鲜有报道。

    降香黄檀(Dalbergia odorifera T. Chen)系豆科蝶形花亚科黄檀属的植物,为国家二级保护植物[17, 18]。橡胶树(Hevea brasiliensis Muell. Arg)是大戟科橡胶树属的一种落叶乔木,原产于南美洲巴西亚马逊河流域,现广泛种植于我国云南、海南,具有重要的生态、经济和战略价值[19, 20]。早期关于橡胶树的研究主要集中于林下经济发展(大都与草本植物间作或套作)、耐旱树种培育以及栽培技术等方面。已有研究发现降香黄檀能够促进檀香(Santalum album L.)和尾叶桉(Eucalyptus robusta S.T. Blake)的生长[21, 22]。因此,我们推测橡胶树的生长发育可能会受邻株豆科植物降香黄檀的影响。但关于降香黄檀和橡胶树混合种植的研究还未见报道。鉴于此,本研究选取生长于热带地区的降香黄檀和橡胶树进行幼苗混和盆栽实验,人工模拟干旱处理和大气氮沉降,探究降香黄檀-橡胶树幼苗在不同水氮联合处理下的生长、叶绿素荧光变化规律及两树种的互作效应,以期为热带森林树种应对未来全球变化和降香黄檀-橡胶树混交林的可持续发展提供理论依据。

    本实验在海南大学实验大棚内进行(20°03′33.2′′N,110°20′16.9′′E)。实验材料为6个月苗龄的降香黄檀和橡胶树实生幼苗,其中,降香黄檀幼苗源于海南乐东尖峰岭内的苗圃,橡胶树幼苗为GT1种子萌发得到。本研究选择株高相近且健康的幼苗进行盆栽实验(降香黄檀高20 cm,橡胶树高25 cm)。每桶培养基质干重约10 kg(红壤土 : 沙 = 2 : 1,V/V),土壤养分含量为有机质0.43%、铵态氮5.2 mg/kg、速效磷31.96 mg/kg、有效钾20.72 mg/kg,土壤pH 值6.83。

    实验采用三因素(栽植模式、水分、氮素)完全随机设计[23],2021年2月1日栽植于桶中,每桶2株(3种栽植模式分别为:降香黄檀2株、橡胶树2株、降香黄檀和橡胶树各1株),苗间距约16 cm,塑料桶高27 cm、上直径26 cm、下直径23 cm,桶间距保持在25 cm左右,以确保植株间的相互影响基本一致。每种栽植模式下设置正常浇水(最大田间持水量的80% ~ 85%)和干旱胁迫(最大田间持水量的40% ~ 45%)2种水分处理,每种水分处理下设置不施氮(0 kg · ha−1 · a−1)和施氮(60 kg · ha−1· a−1)2种氮素水平,即每种栽植模式有对照湿润(CW)、施氮湿润(NW)、对照干旱(CD)、施氮干旱(ND)4个处理,每个处理5个重复,每个重复4桶苗木。总计12个处理,共240桶480株苗木,密度约为9桶(18株)/m2。其中,氮添加量的设置参考周璋[24]的研究结果,每隔20 d添加1次,共7次,施氮湿润组每桶每次添加800 mL硝酸铵溶液(浓度为0.064 g/L),施氮干旱组每桶每次添加300 mL硝酸铵溶液(浓度为0.170 g/L),将其均匀浇灌到幼苗根部,添加时间均为傍晚,其他处理时间浇灌等量的纯水。水分控制采用土壤水分速测仪(D-321,海南微知传感器科技有限公司)结合整盆称重法,每3 d称重一次进行校准。实验处理150 d,从2021年5月14日-10月16日。

    每个处理分别在第1 d及150 d随机选取6盆幼苗,用卷尺测量(精确到0.1 cm)株高(H),株高增量ΔH = H150H1;在处理第150 d用数显游标卡尺(精确到0.01 mm)测量其基径(D),即幼苗的直径。

    处理第1 d及150 d时记录降香黄檀的分支数(B),第150 d时记录橡胶树叶片数(LN);用直尺(精确到0.1 cm)测定叶长(LL)、叶宽(LW)、叶柄长(LPL),用LI-3000C叶面积仪(LI-COR,美国)测定整株植物所有叶片的叶面积,并汇总得到总叶面积(TA)。其中降香黄檀分支数增量INB = B150B1,橡胶树平均单叶面积ALA = TA/LN

    参考高俊凤[25]的方法测定并计算叶绿素a(Chl a)、叶绿素b(Chl b)、总叶绿素(Chltotal)和类胡萝卜素(Car)含量。称取健康新鲜叶片0.2 g,剪碎,混匀。加入80%的丙酮溶液,置于黑暗处至叶片发白,分别测量波长为470、646、663 nm时的OD值。

    使用MINI-PAM-Ⅱ便携式叶绿素荧光仪(Heinz Walz GmbH,德国)测定叶绿素荧光动力学参数。选取植株中段3 ~ 5片叶子,避开主叶脉,于21:00 - 23:00,暗适应40 min后进行测定,并计算初始荧光(Fo),最大荧光(Fm)、PSⅡ的最大光化学效率(Fv/Fm)、电子传递速率(ETR)、光化学淬灭系数(qP)和非光化学猝灭系数(NPQ[4]。其中(PSⅡ的潜在活性)Fv / Fo =(Fm − Fo)/ Fo

    采用SPSS 24.0软件进行数据分析及处理,采用单因素方差分析(One-way ANOVA)对纯/混栽各处理进行均值比较,采用Duncan多重比较法进行各处理间差异显著性检验。采用独立样本t检验对同一树种各指标在不同栽植模式下进行差异比较。采用多因素方差分析(Multi-ANOVA)评估栽植模式、水分、氮素及其交互作用对各指标的影响。对各指标间的关系进行Pearson 相关性分析。所有数据均取3次以上重复测定的平均值。

    干旱胁迫对纯栽、混栽的降香黄檀与橡胶树株高增量及基径均有显著的抑制作用。另一方面,混栽能显著缓解干旱胁迫对降香黄檀的抑制作用,但加剧对橡胶树的抑制作用(图1)。

    图  1  不同处理下降香黄檀和橡胶树幼苗的株高增量、基径差异
    不同大小写字母分别代表混栽和纯栽幼苗不同处理间差异显著(P < 0.05)。* 和** 分别表示同一处理下,不同栽植模式的降香黄檀或橡胶树幼苗在P < 0.05和P < 0.01水平上差异显著、极显著。下同。
    Figure  1.  Differences in plant height increment and basal diameter of Dalbergia odorifera and Hevea brasiliensis seedlings under different treatments
    Different uppercase/lowercase letters represent significant differences between different treatments of mixed and pure seedlings, respectively (P < 0.05). * and ** indicate significant difference and extremely significant difference at P < 0.05 and P < 0.01 levels in D. odorifera or H. brasiliensis seedlings with different planting patterns under the same treatment, respectively. Same below.

    水分充足条件下,施氮对混栽降香黄檀的株高增量、纯栽降香黄檀的基径、纯栽和混栽橡胶树的株高增量均有显著促进作用,分别增加了13.02%、8.22%、21.94%和16.02%。混栽对降香黄檀株高增量和基径、橡胶树基径均有显著促进作用。干旱情况下,施氮对纯栽、混栽降香黄檀的株高增量、纯栽降香黄檀的基径、混栽橡胶树的株高增量均有显著促进作用,分别增加了24.52%、19.54%、8.81%和29.72%。混栽对降香黄檀的基径有显著正面影响,而对橡胶树的株高增量和基径有显著负面影响。此外,水氮交互作用对降香黄檀幼苗的株高增量无显著影响,但显著影响橡胶树幼苗的株高增量;栽植模式与水氮的三因素交互作用对所有生长指标均无显著影响(表1)。

    表  1  栽植模式、水分和氮素及其交互作用对两树种株高增量、基径的影响
    Table  1.  Effects of planting pattern, water, nitrogen, and their interactions on height increment and basal diameter of two tree species
    物种
    Species
    参数
    Parameter
    CWNC × WC × NW × NC × W × N
    降香黄檀
    Dalbergia odorifera
    株高增量0.000**0.000**0.000**0.0520.3910.8700.257
    基径0.000**0.000**0.002**0.9760.0610.8740.413
    橡胶树
    Hevea brasiliensis
    株高增量0.000**0.000**0.000**0.000**0.4010.021*0.057
    基径0.5960.000**0.018*0.000**0.2360.9780.948
    注:C,栽植模式;W,水分水平;N,氮素水平。表中数值为P值。*,P < 0.05;**,P < 0.01。
    Notes: C, planting pattern; W, water level; N, nitrogen level. Values are P-values.
    下载: 导出CSV 
    | 显示表格

    干旱胁迫对纯栽、混栽降香黄檀的LWINBTA以及混栽橡胶树的LL均有显著抑制作用(表2)。

    表  2  不同处理条件对降香黄檀和橡胶树幼苗叶片性状的影响
    Table  2.  Effects of different treatments on leaf traits of Dalbergia odorifera and Hevea brasiliensis seedlings
    栽植模式
    Planting pattern
    处理
    Treatment
    降香黄檀
    D. odorifera
    橡胶树
    H. brasiliensis
    叶长
    LL / cm
    叶宽
    LW / cm
    分支数增量
    INB / twig/plant
    总叶面积
    TA / cm2
    叶长
    LL / cm
    叶宽
    LW / cm
    叶柄长
    LPL / cm
    平均单叶面积
    ALA / cm2
    纯栽
    CW6.18 ± 0.08b2.86 ± 0.09b24.88 ± 0.52b4605.05 ± 179.48b8.58 ± 0.26a2.90 ± 0.07a7.68 ± 0.27b7.92 ± 0.64a
    NW6.73 ± 0.10a3.20 ± 0.07a34.00 ± 1.19a6044.16 ± 630.23a10.31 ± 1.04a3.03 ± 0.23a9.13 ± 0.13a9.37 ± 0.94a
    CD5.50 ± 0.12c2.55 ± 0.06c13.38 ± 0.47d1680.67 ± 48.67c8.43 ± 0.60a2.93 ± 0.14a7.50 ± 0.35b7.70 ± 1.18a*
    ND6.50 ± 0.26ab2.88 ± 0.09b18.13 ± 0.43c2558.30 ± 128.05c9.08 ± 0.20a2.94 ± 0.13a7.43 ± 0.15b7.80 ± 0.91a
    混栽
    CW6.44 ± 0.15B3.16 ± 0.11B35.00 ± 0.91B**4842.23 ± 301.98B8.98 ± 0.21B2.98 ± 0.12A7.63 ± 0.47B8.18 ± 1.00AB
    NW7.66 ± 0.33A*3.40 ± 0.15A41.75 ± 1.25A**6178.16 ± 265.31A11.06 ± 0.22A3.10 ± 0.15A9.78 ± 0.65A10.38 ± 3.17A
    CD5.29 ± 0.11C2.53 ± 0.08C17.00 ± 0.41C**2360.02 ± 44.76C**8.00 ± 0.29C2.79 ± 0.06A6.74 ± 0.51B3.39 ± 0.45B
    ND6.30 ± 0.11B2.89 ± 0.08B18.25 ± 0.25C2659.07 ± 139.59C8.93 ± 0.22B2.91 ± 0.09A7.38 ± 0.24B6.00 ± 0.67AB
    FC0.1290.0760.000**0.1600.5750.9470.8480.227
    FW0.000**0.000**0.000**0.000**0.003**0.2680.000**0.010*
    FN0.000**0.000**0.000**0.000**0.001**0.3140.001**0.117
    FC × W0.004**0.0580.000**0.6110.2530.3940.2100.070
    FC × N0.1820.7700.008**0.3990.7350.7610.2100.410
    FW × N0.6390.6590.000**0.0560.0810.7610.011*0.811
    FC × W × N0.1980.6180.6600.5550.8490.7610.9910.659
    注:表中数据为平均值 ± 标准误。上方数据不同大/小写字母分别代表混栽和纯栽幼苗不同处理间差异显著(P < 0.05)。* 和** 分别表示同一处理下不同栽植模式的降香黄檀或橡胶树幼苗在P < 0.05和 P < 0.01水平上差异显著。下方数据为栽植模式(C)、水分(W)、氮素(N)及其交互作用对降香黄檀和橡胶树幼苗各指标的影响,表中数值为P值。*,P < 0.05;**,P < 0.01。
    Notes: Data in the table are Mean ± Standard error. Upper data, different uppercase/lowercase letters represent significant differences between different treatments of mixed and pure seedlings, respectively (P < 0.05). *, significant differences in D. odorifera or H. brasiliensis seedlings with different planting patterns under the same treatment (P < 0.05); **, extremely significant differences in D. odorifera and H. brasiliensis seedlings with different planting patterns under the same treatment (P < 0.01). Below data, effects of planting pattern (C), water (W), nitrogen (N), and their interactions on various indicators of D. odorifera and H. brasiliensis seedlings. Values are P-values. *, P < 0.05; **, P < 0.01.
    下载: 导出CSV 
    | 显示表格

    水分充足条件下,施氮对纯栽、混栽降香黄檀的LLLWINBTA,纯栽橡胶树的LPL,以及混栽橡胶树的LLLPL均有显著促进作用;混栽对降香黄檀的LLINB有显著促进作用。干旱情况下,施氮对纯栽、混栽降香黄檀的LLLW、混栽橡胶树的LL有显著促进作用;混栽对降香黄檀INBTA有显著正面影响,而对橡胶树ALA有显著负面影响。此外,水氮交互作用显著影响降香黄檀幼苗的INB和橡胶树幼苗的LPL;而栽植模式与水氮的三因素交互作用对所有叶片性状指标均无显著影响。

    干旱胁迫对纯栽降香黄檀Chl b含量,未施氮情况下的混栽降香黄檀Chl b、Caro含量,纯栽、混栽橡胶树光合色素的含量均有显著抑制作用(表3)。

    表  3  不同处理条件对降香黄檀和橡胶树幼苗光合色素含量的影响
    Table  3.  Effects of different treatment conditions on content of photosynthetic pigments in Dalbergia odorifera and Hevea brasiliensis seedlings
    栽植模式
    Planting
    pattern
    处理
    Treatment
    降香黄檀
    D. odorifera
    橡胶树
    H. brasiliensis
    叶绿素a
    Chl a / μg/g
    叶绿素b
    Chl b / μg/g
    总叶绿素
    Chltotal / μg/g
    类胡萝卜素
    Caro / μg/g
    叶绿素a
    Chl a / μg/g
    叶绿素b
    Chl b / μg/g
    总叶绿素
    Chltotal / μg/g
    类胡萝卜素
    Caro / μg/g
    纯栽
    CW1127.30 ± 39.42ab477.44 ± 35.77ab1604.74 ± 75.07ab282.10 ± 4.62a772.41 ± 4.31b265.86 ± 1.64a1038.27 ± 5.03b323.62 ± 2.40a
    NW1180.34 ± 11.89a507.18 ± 17.59a1687.52 ± 27.86a323.59 ± 22.72a854.60 ± 32.33a279.14 ± 8.36a1117.00 ± 41.80a336.63 ± 16.17a
    CD1077.24 ± 16.13c398.84 ± 17.35c1476.08 ± 14.53b285.02 ± 28.52a656.72 ± 9.91c**233.95 ± 3.41b**890.67 ± 11.35c**196.23 ± 1.15c**
    ND1121.75 ± 12.11ab433.58 ± 5.33bc1555.33 ± 17.14ab313.58 ± 10.48a702.96 ± 12.28c**240.26 ± 3.74b**943.22 ± 14.19c**291.15 ± 4.73b**
    混栽
    CW1172.70 ± 22.3AB*507.75 ± 15.83A1680.45 ± 37.95AB309.94 ± 6.62C*887.56 ± 5.03B**389.88 ± 9.80B**1277.44 ± 13.64B**331.49 ± 43.94A
    NW1227.21 ± 8.80A508.30 ± 9.91A1735.51 ± 18.71A385.25 ± 4.49A*980.66 ± 6.76A**508.08 ± 12.07A**1468.39 ± 11.01A**353.16 ± 4.88A
    CD1151.00 ± 34.60B429.86 ± 41.54B1580.86 ± 76.12B338.81 ± 5.17B285.17 ± 11.42D92.55 ± 5.58D377.71 ± 16.53D144.28 ± 4.86C
    ND1166.60 ± 10.02AB*441.54 ± 9.04AB1608.15 ± 18.94AB373.73 ± 15.95A*563.26 ± 5.59C191.34 ± 4.34C754.60 ± 9.33C233.36 ± 3.14B
    FC0.003**0.2810.030*0.000**0.000**0.000**0.046*0.086
    FW0.006**0.000**0.001**0.8110.000**0.000**0.000**0.000**
    FN0.014*0.2410.0560.000**0.000**0.000**0.000**0.000**
    FC × W0.6800.9070.7830.5710.000**0.000**0.000**0.010*
    FC × N0.6670.4210.5200.3540.000**0.000**0.000**0.953
    FW × N0.4590.8030.8000.2220.000**0.1940.006**0.005**
    FC × W × N0.6340.9250.8440.5240.000**0.5350.000**0.764
    注:表中数据为平均值 ± 标准误。上方数据不同大/小写字母分别代表混栽和纯栽幼苗不同处理间差异显著(P < 0.05)。* 和** 分别表示同一处理下不同栽植模式的降香黄檀或橡胶树幼苗在P < 0.05和 P < 0.01水平上差异显著。下方数据为栽植模式(C)、水分(W)、氮素(N)及其交互作用对降香黄檀和橡胶树幼苗各指标的影响,表中数值为P值。*,P < 0.05;**,P < 0.01。下同。
    Notes: Data in the table are Mean ± Standard error. Upper data, different uppercase/lowercase letters represent significant differences between different treatments of mixed and pure seedlings, respectively (P < 0.05). *, significant differences in D. odorifera or H. brasiliensis seedlings with different planting patterns under the same treatment (P < 0.05); **, extremely significant differences in D. odorifera and H. brasiliensis seedlings with different planting patterns under the same treatment (P < 0.01). Below data, effects of planting pattern (C), water (W), nitrogen (N), and their interactions on various indicators of D. odorifera and H. brasiliensis seedlings. Values are P-values. *, P < 0.05; **, P < 0.01. Same below.
    下载: 导出CSV 
    | 显示表格

    水分充足条件下,施氮对混栽栽植模式下的降香黄檀Caro、纯栽和混栽橡胶树Chl a、Chltotal的合成均有显著促进作用;混栽对降香黄檀Chl a和Caro、橡胶树Chl a、Chl b、Chltotal的合成也有显著促进作用。干旱情况下,施氮对纯栽降香黄檀Chl a、混栽降香黄檀Caro、纯栽橡胶树Caro、混栽橡胶树各光合色素的合成均均有显著促进作用;混栽对降香黄檀Chl a、Caro的合成有显著正面影响,而对橡胶树各光合色素的合成均有显著负面影响。此外,水氮交互作用显著影响橡胶树幼苗Chl a、Chltotal和Caro的含量,但对降香黄檀幼苗各光合色素均无显著影响;栽植模式与水氮的三因素交互作用显著影响橡胶树幼苗Chl a、Chltotal的含量。

    干旱胁迫对纯栽降香黄檀Fv / Fo、未施氮纯栽橡胶树ETR、混栽橡胶树Fv / FoFv / Fm均有显著抑制作用;但提高了两树种的FoNPQ值,虽然不具统计学意义(表4表5图2)。

    图  2  不同处理条件对降香黄檀和橡胶树幼苗qPNPQ的影响
    Figure  2.  Effects of different treatment conditions on qP and NPQ of Dalbergia odorifera and Hevea brasiliensis seedlings
    表  4  不同处理条件对降香黄檀和橡胶树幼苗叶绿素荧光参数的影响
    Table  4.  Effects of different treatments on chlorophyll fluorescence parameters of Dalbergia odorifera and Hevea brasiliensis seedlings
    栽植
    模式
    Planting pattern
    处理
    Treatment
    降香黄檀
    D. odorifera
    橡胶树
    H. brasiliensis
    初始荧光FoPS Ⅱ潜在活性
    Fv / Fo
    PS Ⅱ最大光化学效率Fv / Fm电子传递速率ETR初始荧光FoPS Ⅱ潜在活性
    Fv / Fo
    PS Ⅱ最大光化学效率Fv / Fm电子传递速率ETR
    纯栽
    CW354.00 ± 27.05ab4.76 ± 0.29ab0.82 ± 0.01a40.48 ± 7.43b317.75 ± 26.20a4.14 ± 0.34ab0.81 ± 0.01ab33.65 ± 2.22a
    NW318.75 ± 8.11b*5.19 ± 0.13a0.83 ± 0.00a72.03 ± 13.44a300.50 ± 22.48a4.98 ± 0.21a0.83 ± 0.01a33.55 ± 2.20a
    CD404.00 ± 38.36a3.62 ± 0.15c0.78 ± 0.01b40.30 ± 4.90b341.25 ± 34.78a3.52 ± 0.52b0.77 ± 0.03b26.23 ± 1.84b
    ND286.50 ± 17.05b4.44 ± 0.13b0.82 ± 0.00a51.43 ± 5.86ab337.75 ± 5.02a4.15 ± 0.16ab0.81 ± 0.01ab31.68 ± 2.45ab
    混栽
    CW285.50 ± 26.01A4.84 ± 0.41AB0.83 ± 0.01AB53.95 ± 2.54AB292.25 ± 14.34AB4.43 ± 0.08AB0.82 ± 0.00AB31.08 ± 3.07A
    NW258.75 ± 15.50A5.47 ± 0.55A0.84 ± 0.01A63.85 ± 5.61A272.50 ± 16.83B5.19 ± 0.31A0.84 ± 0.01A33.05 ± 3.27A
    CD321.75 ± 22.05A3.87 ± 0.26B0.79 ± 0.01B45.65 ± 2.31B381.25 ± 26.31A3.17 ± 0.29C0.76 ± 0.01C19.60 ± 2.92A
    ND261.00 ± 9.60A4.76 ± 0.26AB0.82 ± 0.00AB60.70 ± 4.77A328.75 ± 44.30AB4.00 ± 0.31B0.79 ± 0.01B27.95 ± 6.25A
    FC0.001**0.2930.4070.3040.7660.9940.7840.163
    FW0.3860.000**0.000**0.1020.011*0.000**0.000**0.010*
    FN0.001**0.004**0.004**0.002**0.2250.002**0.008**0.105
    FC × W0.7470.8070.7100.6280.2690.2510.4500.443
    FC × N0.3160.7560.9760.3600.4970.8960.9950.598
    FW × N0.0800.4670.0750.4290.8010.8730.4360.213
    FC × W × N0.4560.8810.7710.1900.5390.7420.9950.930
    下载: 导出CSV 
    | 显示表格
    表  5  栽植模式、水分和氮素及其交互作用对两树种qP、NPQ的影响
    Table  5.  Effects of planting pattern, water, nitrogen, and their interactions on qP and NPQ of two tree species
    物种
    Species
    参数
    Parameter
    CWNC × WC × NW × NC × W × N
    降香黄檀
    D. odorifera
    qP0.5150.2890.010*0.6500.6080.5150.187
    NPQ0.5390.013*0.5280.9380.9040.7100.942
    橡胶树
    H. brasiliensis
    qP0.4230.1440.2030.3020.8120.7120.373
    NPQ0.0730.035*0.045*0.6570.6700.1130.787
    下载: 导出CSV 
    | 显示表格

    水分充足条件下,施氮对纯栽模式下降香黄檀的ETR具有显著促进作用,其值提高了77.94%;混栽对降香黄檀的Fo具有显著抑制作用,但对橡胶树无显著影响。干旱情况下,施氮对纯栽降香黄檀的Fv / FoFv / Fm、混栽降香黄檀的ETRqP、混栽橡胶树的Fv / FoFv / Fm均有显著促进作用,分别提高了22.65%、5.13%、32.97%、32.66%、26.18%、3.95%。 此外,水氮交互作用及其与栽植模式的三因素交互作用对降香黄檀和橡胶树幼苗的荧光参数均无显著影响。

    降香黄檀幼苗的ΔHLWTA与Chl b、ChltotalFv / FoFv / Fm表现为极显著正相关,与NPQ表现为极显著负相关(图3: A)。橡胶树幼苗的ΔHALA与Chl a、Chl b、Chltotal、Caro、Fv / FoFv / FmETRqP呈极显著正相关,而与Fo呈极显著负相关(图3: B)。

    图  3  不同处理条件下降香黄檀(A)和橡胶树(B)幼苗各指标间相关性分析
    *P < 0.05, **P < 0.01.
    Figure  3.  Correlation analysis between various indicators of Dalbergia odorifera (A) and Hevea brasiliensis (B) seedlings under different treatment conditions

    干旱是植物经常遭受的非生物胁迫之一。本研究中,降香黄檀和橡胶树幼苗在水分充足的施氮处理下生长态势最佳。干旱胁迫下,降香黄檀幼苗通过降低株高、分支数的方式来减少自身水分需求,以保证资源的持续利用[26-28];而橡胶树则主要通过放缓株高与基径生长,降低叶长、叶宽、叶柄长及平均单叶面积;且降香黄檀株高、基径的减少量大于橡胶树。研究发现,施氮显著促进干旱胁迫下两种幼苗的生长,且对降香黄檀的促进作用强于橡胶树,表明适量添加氮素可以缓解干旱胁迫对植物生长的不利影响[29],且促进效应存在物种特异性。

    光合色素是类囊体膜的重要组成成分,作为光能的受体,直接参与光合作用[4]。叶绿素荧光作为植物光合作用的探针,能够灵敏准确地检测植物光合系统对环境胁迫的响应[30]。分析显示,降香黄檀和橡胶树幼苗的生长与光合色素、叶绿素荧光参数存在一定的相关性。研究表明,在遭受较严重的干旱胁迫后,植物叶片光合色素含量下降,PSⅡ受损导致光合作用减弱,从而抑制植物生长[4, 31, 32]。本研究结果显示,两树种的光合色素、叶绿素荧光参数与株高增量、基径的变化规律较为一致。与湿润处理组相比,干旱胁迫显著降低了纯栽降香黄檀幼苗的Chl b含量和Fv / Fo。对于橡胶树,干旱处理显著抑制了幼苗光合色素的合成;且Fo升高,而Fv / FoFv / FmETR降低,表明干旱胁迫下PSⅡ反应中心结构受到损害,因此主动降低反应中心光能转化效率、减缓电子传递速率来响应CO2同化能力的降低,从而降低橡胶树幼苗的光合速率,以适应不良的生存环境[31, 32]。另外,本研究发现,干旱条件下施氮处理组总叶绿素含量较未施氮处理组均有不同程度的提高; 且Fv / FmETR的值也有升高,说明施氮可以减轻干旱胁迫对光合性能的抑制作用,增加植物对干旱的适应性。这与钟小莉等[33]对胡杨(Populus euphratica Oliv.)和李志元等[34]对雪菊(Coreopsis tinctoria Nutt.)的研究结果一致。此外,水氮交互作用显著影响橡胶树幼苗光合色素的合成,但对降香黄檀却无显著影响,表明橡胶树光合作用更易受环境因素的影响。

    本研究结果显示,与湿润组相比,干旱胁迫下降香黄檀和橡胶树幼苗的qP呈下降趋势,而NPQ呈升高趋势,表明在遭受干旱胁迫后,两种植物吸收的光能用于光化学反应的部分减少,从而使光反应中心PSⅡ的光化学活性降低,造成积累的光能过剩。与之相反,NPQ值的上升表明幼苗通过及时消耗掉过剩的光能,使其以热能的形式散失,从而保护光合系统[4, 35]。与未施氮组相比,施氮组两种幼苗的qP较高,且在干旱条件下混栽的降香黄檀幼苗中差异显著,但在橡胶树中并不显著,表明施氮可以增加两树种用于光化学反应的光能,且对前者的促进作用更强。

    豆科植物具有固氮能力,常被作为伴生树种用于混交林生态系统中来促进目标树种的生长。在杨曾奖等[36]和许峻模等[37]的研究中,混交种植抑制了厚荚相思(Acacia crassicarpa Benth.)和降香黄檀的生长,但促进了桉树(Eucalyptus robusta Smith.)苗高、地径的生长。在本研究中,混栽降香黄檀在各处理组均表现为促进。在湿润条件下,与降香黄檀混栽对橡胶树幼苗的生长发育有促进作用;但在干旱胁迫下,降香黄檀则显著抑制其生长与光合性能。这说明降香黄檀与橡胶树的互作效应受土壤水分的影响。

    对于降香黄檀,与同种栽植相比,与异种橡胶树混栽更能减少其资源性竞争[23]。在水分充足条件下,降香黄檀所固定的氮素更多的是被橡胶树吸收利用,光合色素含量的增加提高了光合性能,从而促进橡胶树的生长。在干旱胁迫下,降香黄檀所固定氮素更多的是满足自身需求,以抵御不良环境。另外,由于降香黄檀的耐旱能力强于橡胶树,且在幼苗生长早期降香黄檀生长速度快于橡胶树,因此,尽管橡胶树为直根系,可以吸收更深层的水分,但受自身生长速度和降香黄檀庞大须根系的阻碍,最终表现为在干旱情况下被降香黄檀所抑制。此外,在本研究中,干旱胁迫显著降低混栽橡胶树幼苗的Fv / FoFv / Fm,而在纯栽模式中并不显著,这也表明与降香黄檀混栽会加剧水分胁迫对橡胶树叶片光系统结构的损伤。

    研究结果表明,不同栽植模式下,降香黄檀和橡胶树幼苗对干旱和施氮处理的响应相似。干旱胁迫下,两树种一方面通过减缓苗高、基径、叶长、叶宽生长,以缩小叶面积的方式来减少自身生存所需能量,另一方面通过减少光合色素合成、降低反应中心光能转化效率、减缓电子传递速率和及时消耗过剩的光能来适应不良的生存环境。干旱条件下,施氮可改善幼苗的生长状态,且对降香黄檀的促进作用更强。此外,干旱、施氮交互作用显著影响降香黄檀的分支数和橡胶树的株高增量、叶柄长、叶绿素a含量、总叶绿素含量及类胡萝卜素含量,且两树种均在施氮湿润处理下生长、光合色素积累状况最佳。总之,混栽可改善降香黄檀和湿润条件下橡胶树幼苗的生长,但显著抑制干旱胁迫下橡胶树幼苗的生长和光合性能,表明土壤水分变化可改变降香黄檀-橡胶树的互作效应。

  • 图  1   不同处理下降香黄檀和橡胶树幼苗的株高增量、基径差异

    不同大小写字母分别代表混栽和纯栽幼苗不同处理间差异显著(P < 0.05)。* 和** 分别表示同一处理下,不同栽植模式的降香黄檀或橡胶树幼苗在P < 0.05和P < 0.01水平上差异显著、极显著。下同。

    Figure  1.   Differences in plant height increment and basal diameter of Dalbergia odorifera and Hevea brasiliensis seedlings under different treatments

    Different uppercase/lowercase letters represent significant differences between different treatments of mixed and pure seedlings, respectively (P < 0.05). * and ** indicate significant difference and extremely significant difference at P < 0.05 and P < 0.01 levels in D. odorifera or H. brasiliensis seedlings with different planting patterns under the same treatment, respectively. Same below.

    图  2   不同处理条件对降香黄檀和橡胶树幼苗qPNPQ的影响

    Figure  2.   Effects of different treatment conditions on qP and NPQ of Dalbergia odorifera and Hevea brasiliensis seedlings

    图  3   不同处理条件下降香黄檀(A)和橡胶树(B)幼苗各指标间相关性分析

    *P < 0.05, **P < 0.01.

    Figure  3.   Correlation analysis between various indicators of Dalbergia odorifera (A) and Hevea brasiliensis (B) seedlings under different treatment conditions

    表  1   栽植模式、水分和氮素及其交互作用对两树种株高增量、基径的影响

    Table  1   Effects of planting pattern, water, nitrogen, and their interactions on height increment and basal diameter of two tree species

    物种
    Species
    参数
    Parameter
    CWNC × WC × NW × NC × W × N
    降香黄檀
    Dalbergia odorifera
    株高增量0.000**0.000**0.000**0.0520.3910.8700.257
    基径0.000**0.000**0.002**0.9760.0610.8740.413
    橡胶树
    Hevea brasiliensis
    株高增量0.000**0.000**0.000**0.000**0.4010.021*0.057
    基径0.5960.000**0.018*0.000**0.2360.9780.948
    注:C,栽植模式;W,水分水平;N,氮素水平。表中数值为P值。*,P < 0.05;**,P < 0.01。
    Notes: C, planting pattern; W, water level; N, nitrogen level. Values are P-values.
    下载: 导出CSV

    表  2   不同处理条件对降香黄檀和橡胶树幼苗叶片性状的影响

    Table  2   Effects of different treatments on leaf traits of Dalbergia odorifera and Hevea brasiliensis seedlings

    栽植模式
    Planting pattern
    处理
    Treatment
    降香黄檀
    D. odorifera
    橡胶树
    H. brasiliensis
    叶长
    LL / cm
    叶宽
    LW / cm
    分支数增量
    INB / twig/plant
    总叶面积
    TA / cm2
    叶长
    LL / cm
    叶宽
    LW / cm
    叶柄长
    LPL / cm
    平均单叶面积
    ALA / cm2
    纯栽
    CW6.18 ± 0.08b2.86 ± 0.09b24.88 ± 0.52b4605.05 ± 179.48b8.58 ± 0.26a2.90 ± 0.07a7.68 ± 0.27b7.92 ± 0.64a
    NW6.73 ± 0.10a3.20 ± 0.07a34.00 ± 1.19a6044.16 ± 630.23a10.31 ± 1.04a3.03 ± 0.23a9.13 ± 0.13a9.37 ± 0.94a
    CD5.50 ± 0.12c2.55 ± 0.06c13.38 ± 0.47d1680.67 ± 48.67c8.43 ± 0.60a2.93 ± 0.14a7.50 ± 0.35b7.70 ± 1.18a*
    ND6.50 ± 0.26ab2.88 ± 0.09b18.13 ± 0.43c2558.30 ± 128.05c9.08 ± 0.20a2.94 ± 0.13a7.43 ± 0.15b7.80 ± 0.91a
    混栽
    CW6.44 ± 0.15B3.16 ± 0.11B35.00 ± 0.91B**4842.23 ± 301.98B8.98 ± 0.21B2.98 ± 0.12A7.63 ± 0.47B8.18 ± 1.00AB
    NW7.66 ± 0.33A*3.40 ± 0.15A41.75 ± 1.25A**6178.16 ± 265.31A11.06 ± 0.22A3.10 ± 0.15A9.78 ± 0.65A10.38 ± 3.17A
    CD5.29 ± 0.11C2.53 ± 0.08C17.00 ± 0.41C**2360.02 ± 44.76C**8.00 ± 0.29C2.79 ± 0.06A6.74 ± 0.51B3.39 ± 0.45B
    ND6.30 ± 0.11B2.89 ± 0.08B18.25 ± 0.25C2659.07 ± 139.59C8.93 ± 0.22B2.91 ± 0.09A7.38 ± 0.24B6.00 ± 0.67AB
    FC0.1290.0760.000**0.1600.5750.9470.8480.227
    FW0.000**0.000**0.000**0.000**0.003**0.2680.000**0.010*
    FN0.000**0.000**0.000**0.000**0.001**0.3140.001**0.117
    FC × W0.004**0.0580.000**0.6110.2530.3940.2100.070
    FC × N0.1820.7700.008**0.3990.7350.7610.2100.410
    FW × N0.6390.6590.000**0.0560.0810.7610.011*0.811
    FC × W × N0.1980.6180.6600.5550.8490.7610.9910.659
    注:表中数据为平均值 ± 标准误。上方数据不同大/小写字母分别代表混栽和纯栽幼苗不同处理间差异显著(P < 0.05)。* 和** 分别表示同一处理下不同栽植模式的降香黄檀或橡胶树幼苗在P < 0.05和 P < 0.01水平上差异显著。下方数据为栽植模式(C)、水分(W)、氮素(N)及其交互作用对降香黄檀和橡胶树幼苗各指标的影响,表中数值为P值。*,P < 0.05;**,P < 0.01。
    Notes: Data in the table are Mean ± Standard error. Upper data, different uppercase/lowercase letters represent significant differences between different treatments of mixed and pure seedlings, respectively (P < 0.05). *, significant differences in D. odorifera or H. brasiliensis seedlings with different planting patterns under the same treatment (P < 0.05); **, extremely significant differences in D. odorifera and H. brasiliensis seedlings with different planting patterns under the same treatment (P < 0.01). Below data, effects of planting pattern (C), water (W), nitrogen (N), and their interactions on various indicators of D. odorifera and H. brasiliensis seedlings. Values are P-values. *, P < 0.05; **, P < 0.01.
    下载: 导出CSV

    表  3   不同处理条件对降香黄檀和橡胶树幼苗光合色素含量的影响

    Table  3   Effects of different treatment conditions on content of photosynthetic pigments in Dalbergia odorifera and Hevea brasiliensis seedlings

    栽植模式
    Planting
    pattern
    处理
    Treatment
    降香黄檀
    D. odorifera
    橡胶树
    H. brasiliensis
    叶绿素a
    Chl a / μg/g
    叶绿素b
    Chl b / μg/g
    总叶绿素
    Chltotal / μg/g
    类胡萝卜素
    Caro / μg/g
    叶绿素a
    Chl a / μg/g
    叶绿素b
    Chl b / μg/g
    总叶绿素
    Chltotal / μg/g
    类胡萝卜素
    Caro / μg/g
    纯栽
    CW1127.30 ± 39.42ab477.44 ± 35.77ab1604.74 ± 75.07ab282.10 ± 4.62a772.41 ± 4.31b265.86 ± 1.64a1038.27 ± 5.03b323.62 ± 2.40a
    NW1180.34 ± 11.89a507.18 ± 17.59a1687.52 ± 27.86a323.59 ± 22.72a854.60 ± 32.33a279.14 ± 8.36a1117.00 ± 41.80a336.63 ± 16.17a
    CD1077.24 ± 16.13c398.84 ± 17.35c1476.08 ± 14.53b285.02 ± 28.52a656.72 ± 9.91c**233.95 ± 3.41b**890.67 ± 11.35c**196.23 ± 1.15c**
    ND1121.75 ± 12.11ab433.58 ± 5.33bc1555.33 ± 17.14ab313.58 ± 10.48a702.96 ± 12.28c**240.26 ± 3.74b**943.22 ± 14.19c**291.15 ± 4.73b**
    混栽
    CW1172.70 ± 22.3AB*507.75 ± 15.83A1680.45 ± 37.95AB309.94 ± 6.62C*887.56 ± 5.03B**389.88 ± 9.80B**1277.44 ± 13.64B**331.49 ± 43.94A
    NW1227.21 ± 8.80A508.30 ± 9.91A1735.51 ± 18.71A385.25 ± 4.49A*980.66 ± 6.76A**508.08 ± 12.07A**1468.39 ± 11.01A**353.16 ± 4.88A
    CD1151.00 ± 34.60B429.86 ± 41.54B1580.86 ± 76.12B338.81 ± 5.17B285.17 ± 11.42D92.55 ± 5.58D377.71 ± 16.53D144.28 ± 4.86C
    ND1166.60 ± 10.02AB*441.54 ± 9.04AB1608.15 ± 18.94AB373.73 ± 15.95A*563.26 ± 5.59C191.34 ± 4.34C754.60 ± 9.33C233.36 ± 3.14B
    FC0.003**0.2810.030*0.000**0.000**0.000**0.046*0.086
    FW0.006**0.000**0.001**0.8110.000**0.000**0.000**0.000**
    FN0.014*0.2410.0560.000**0.000**0.000**0.000**0.000**
    FC × W0.6800.9070.7830.5710.000**0.000**0.000**0.010*
    FC × N0.6670.4210.5200.3540.000**0.000**0.000**0.953
    FW × N0.4590.8030.8000.2220.000**0.1940.006**0.005**
    FC × W × N0.6340.9250.8440.5240.000**0.5350.000**0.764
    注:表中数据为平均值 ± 标准误。上方数据不同大/小写字母分别代表混栽和纯栽幼苗不同处理间差异显著(P < 0.05)。* 和** 分别表示同一处理下不同栽植模式的降香黄檀或橡胶树幼苗在P < 0.05和 P < 0.01水平上差异显著。下方数据为栽植模式(C)、水分(W)、氮素(N)及其交互作用对降香黄檀和橡胶树幼苗各指标的影响,表中数值为P值。*,P < 0.05;**,P < 0.01。下同。
    Notes: Data in the table are Mean ± Standard error. Upper data, different uppercase/lowercase letters represent significant differences between different treatments of mixed and pure seedlings, respectively (P < 0.05). *, significant differences in D. odorifera or H. brasiliensis seedlings with different planting patterns under the same treatment (P < 0.05); **, extremely significant differences in D. odorifera and H. brasiliensis seedlings with different planting patterns under the same treatment (P < 0.01). Below data, effects of planting pattern (C), water (W), nitrogen (N), and their interactions on various indicators of D. odorifera and H. brasiliensis seedlings. Values are P-values. *, P < 0.05; **, P < 0.01. Same below.
    下载: 导出CSV

    表  4   不同处理条件对降香黄檀和橡胶树幼苗叶绿素荧光参数的影响

    Table  4   Effects of different treatments on chlorophyll fluorescence parameters of Dalbergia odorifera and Hevea brasiliensis seedlings

    栽植
    模式
    Planting pattern
    处理
    Treatment
    降香黄檀
    D. odorifera
    橡胶树
    H. brasiliensis
    初始荧光FoPS Ⅱ潜在活性
    Fv / Fo
    PS Ⅱ最大光化学效率Fv / Fm电子传递速率ETR初始荧光FoPS Ⅱ潜在活性
    Fv / Fo
    PS Ⅱ最大光化学效率Fv / Fm电子传递速率ETR
    纯栽
    CW354.00 ± 27.05ab4.76 ± 0.29ab0.82 ± 0.01a40.48 ± 7.43b317.75 ± 26.20a4.14 ± 0.34ab0.81 ± 0.01ab33.65 ± 2.22a
    NW318.75 ± 8.11b*5.19 ± 0.13a0.83 ± 0.00a72.03 ± 13.44a300.50 ± 22.48a4.98 ± 0.21a0.83 ± 0.01a33.55 ± 2.20a
    CD404.00 ± 38.36a3.62 ± 0.15c0.78 ± 0.01b40.30 ± 4.90b341.25 ± 34.78a3.52 ± 0.52b0.77 ± 0.03b26.23 ± 1.84b
    ND286.50 ± 17.05b4.44 ± 0.13b0.82 ± 0.00a51.43 ± 5.86ab337.75 ± 5.02a4.15 ± 0.16ab0.81 ± 0.01ab31.68 ± 2.45ab
    混栽
    CW285.50 ± 26.01A4.84 ± 0.41AB0.83 ± 0.01AB53.95 ± 2.54AB292.25 ± 14.34AB4.43 ± 0.08AB0.82 ± 0.00AB31.08 ± 3.07A
    NW258.75 ± 15.50A5.47 ± 0.55A0.84 ± 0.01A63.85 ± 5.61A272.50 ± 16.83B5.19 ± 0.31A0.84 ± 0.01A33.05 ± 3.27A
    CD321.75 ± 22.05A3.87 ± 0.26B0.79 ± 0.01B45.65 ± 2.31B381.25 ± 26.31A3.17 ± 0.29C0.76 ± 0.01C19.60 ± 2.92A
    ND261.00 ± 9.60A4.76 ± 0.26AB0.82 ± 0.00AB60.70 ± 4.77A328.75 ± 44.30AB4.00 ± 0.31B0.79 ± 0.01B27.95 ± 6.25A
    FC0.001**0.2930.4070.3040.7660.9940.7840.163
    FW0.3860.000**0.000**0.1020.011*0.000**0.000**0.010*
    FN0.001**0.004**0.004**0.002**0.2250.002**0.008**0.105
    FC × W0.7470.8070.7100.6280.2690.2510.4500.443
    FC × N0.3160.7560.9760.3600.4970.8960.9950.598
    FW × N0.0800.4670.0750.4290.8010.8730.4360.213
    FC × W × N0.4560.8810.7710.1900.5390.7420.9950.930
    下载: 导出CSV

    表  5   栽植模式、水分和氮素及其交互作用对两树种qP、NPQ的影响

    Table  5   Effects of planting pattern, water, nitrogen, and their interactions on qP and NPQ of two tree species

    物种
    Species
    参数
    Parameter
    CWNC × WC × NW × NC × W × N
    降香黄檀
    D. odorifera
    qP0.5150.2890.010*0.6500.6080.5150.187
    NPQ0.5390.013*0.5280.9380.9040.7100.942
    橡胶树
    H. brasiliensis
    qP0.4230.1440.2030.3020.8120.7120.373
    NPQ0.0730.035*0.045*0.6570.6700.1130.787
    下载: 导出CSV
  • [1]

    Geng SC,Chen ZJ,Han SJ,Wang F,Zhang JH. Rainfall reduction amplifies the stimulatory effect of nitrogen addition on N2O emissions from a temperate forest soil[J]. Sci Rep,2017,7:43329. doi: 10.1038/srep43329

    [2] 陈亚宁,李玉朋,李稚,刘永昌,黄文静,等. 全球气候变化对干旱区影响分析[J]. 地球科学进展,2022,37(2):111−119. doi: 10.11867/j.issn.1001-8166.2022.006

    Chen YN,Li YP,Li Z,Liu YC,Huang WJ,et al. Analysis of the impact of global climate change on dryland areas[J]. Advances in Earth Science,2022,37 (2):111−119. doi: 10.11867/j.issn.1001-8166.2022.006

    [3] 罗海婧,张永清,石艳华,李鑫,张耀文. 不同红小豆品种幼苗对干旱胁迫的生理响应[J]. 植物科学学报,2014,32(5):493−501. doi: 10.11913/PSJ.2095-0837.2014.50493

    Luo HJ,Zhang YQ,Shi YH,Li X,Zhang YW. Effects of drought stress on the physiological characteristics of different adzuki bean varieties at the seedling stage[J]. Plant Science Journal,2014,32 (5):493−501. doi: 10.11913/PSJ.2095-0837.2014.50493

    [4] 孙娅楠,赵杨,赵渊祥,曹海,龙建磊. 棕榈幼苗光合和叶绿素荧光对干旱胁迫及复水的响应[J]. 中南林业科技大学学报,2021,41(9):45−52. doi: 10.14067/j.cnki.1673-923x.2021.09.005

    Sun YN,Zhao Y,Zhao YX,Cao H,Long JL. Effects of drought and rewatering on photosynthetic characteristics and chlorophyll fluorescence of Trachycarpus fortunei seedlings[J]. Journal of Central South University of Forestry & Technology,2021,41 (9):45−52. doi: 10.14067/j.cnki.1673-923x.2021.09.005

    [5]

    Babaei K,Moghaddam M,Farhadi N,Ghasemi Pirbalouti A. Morphological,physiological and phytochemical responses of Mexican marigold (Tagetes minuta L. ) to drought stress[J]. Sci Hortic,2021,284:110116. doi: 10.1016/j.scienta.2021.110116

    [6] 张金凤,陈佩珍,孙晓波,胡兴峰,季孔庶. 干旱对马尾松幼苗光合作用及相关生理的影响[J]. 中国农学通报,2021,37(1):32−38. doi: 10.11924/j.issn.1000-6850.casb20200100002

    Zhang JF,Chen PZ,Sun XB,Hu XF,Ji KS. Effects on photosynthetic and resistant physiological characteristics of Pinus massoniana seedlings under drought stress[J]. Chinese Agricultural Science Bulletin,2021,37 (1):32−38. doi: 10.11924/j.issn.1000-6850.casb20200100002

    [7]

    Ren HJ,Chen YC,Wang XT,Wong GTF,Cohen AL,et al. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef[J]. Science,2017,356 (6339):749−752. doi: 10.1126/science.aal3869

    [8]

    Schlesinger WH. On the fate of anthropogenic nitrogen[J]. Proc Natl Acad Sci USA,2009,106 (1):203−208. doi: 10.1073/pnas.0810193105

    [9] 裴昊斐,高卫东,方娇阳,叶可可,祝燕,等. 模拟氮沉降对一年生香椿幼苗生长和光合特性的影响[J]. 中国生态农业学报,2019,27(10):1546−1552.

    Pei HF,Gao WD,Fang JY,Ye KK,Zhu Y,et al. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of one-year-old Toona sinensis seedlings[J]. Chinese Journal of Eco-Agriculture,2019,27 (10):1546−1552.

    [10] 韦献东,施福军,梁小春,陆海燕,刘天泉,王凌晖. 模拟氮沉降对桢楠幼苗生长的影响[J]. 北方园艺,2020(8):74−79.

    Wei XD,Shi FJ,Liang XC,Lu HY,Liu TQ,Wang LH. Effects of simulated nitrogen deposition on the growth of Phoebe zhennan seedlings[J]. Northern Horticulture,2020 (8):74−79.

    [11]

    Xiong X,Chang LY,Khalid M,Zhang JJ,Huang DF. Alleviation of drought stress by nitrogen application in Brassica campestris ssp. Chinensis L.[J]. Agronomy,2018,8 (5):66. doi: 10.3390/agronomy8050066

    [12]

    Zhang SK,Shao L,Sun ZY,Huang Y,Liu N. An atmospheric pollutant (inorganic nitrogen) alters the response of evergreen broad-leaved tree species to extreme drought[J]. Ecotoxicol Environ Saf,2020,187:109750. doi: 10.1016/j.ecoenv.2019.109750

    [13]

    Meng B,Shi BK,Zhong SZ,Chai H,Li SX. Drought sensitivity of aboveground productivity in Leymus chinensis meadow steppe depends on drought timing[J]. Oecologia,2019,191 (3):685−696. doi: 10.1007/s00442-019-04506-w

    [14] 徐楠楠. 水分、光照和氮沉降对五种暖温带典型乔木幼苗生理生态学特性的影响[D]. 济南: 山东大学, 2015: 1−133.
    [15]

    Cheng HY,Wei M,Wang S,Wu BD,Wang CY. Atmospheric N deposition alleviates the unfavorable effects of drought on wheat growth[J]. Braz J Bot,2020,43 (2):229−238. doi: 10.1007/s40415-020-00598-4

    [16]

    Wang S,Wei M,Wu BD,Cheng HY,Jiang K,Wang CY. Does N deposition mitigate the adverse impacts of drought stress on plant seed germination and seedling growth?[J]. Acta Oecol,2020,109:103650. doi: 10.1016/j.actao.2020.103650

    [17] 蒲玉瑾,张丽佳,苗灵凤,杨帆. 不同钙离子浓度对低温下降香黄檀幼苗生长及生理特性的影响[J]. 植物科学学报,2019,37(2):251−259. doi: 10.11913/PSJ.2095-0837.2019.20251

    Pu YJ,Zhang LJ,Miao LF,Yang F. Effects of different calcium concentrations on the growth and physiological characteristics of Dalbergia odorifera under low temperatures[J]. Plant Science Journal,2019,37 (2):251−259. doi: 10.11913/PSJ.2095-0837.2019.20251

    [18] 郭璐瑶,苗灵凤,李大东,向丽珊,杨帆. 施氮和增温对降香黄檀幼苗生长发育和生理特征的影响[J]. 植物科学学报,2022,40(2):259−268. doi: 10.11913/PSJ.2095-0837.2022.20259

    Guo LY,Miao LF,Li DD,Xiang LS,Yang F. Effects of nitrogen addition and warming on growth,development,and physiological characteristics of Dalbergia odorifera T. Chen seedlings[J]. Plant Science Journal,2022,40 (2):259−268. doi: 10.11913/PSJ.2095-0837.2022.20259

    [19] 李国尧,王权宝,李玉英,周双喜,于海英. 橡胶树产胶量影响因素[J]. 生态学杂志,2014,33(2):510−517. doi: 10.13292/j.1000-4890.2014.0036

    Li GY,Wang QB,Li YY,Zhou SX,Yu HY. A review of influencing factors on latex yield of Hevea brasiliensis[J]. Chinese Journal of Ecology,2014,33 (2):510−517. doi: 10.13292/j.1000-4890.2014.0036

    [20] 祁栋灵,孙瑞,谢贵水,杨川,陈帮乾,等. 海南西部低割龄橡胶林土壤水分季节变化特征及其对气象因子响应研究初报[J]. 生态科学,2017,36(6):44−48.

    Qi DL,Sun R,Xie GS,Yang C,Chen BQ,et al. A preliminary study on seasonal changes of soil moisture in rubber plantation of low tapping years and its responses to meteorological factors in western Hainan Island,China[J]. Ecological Science,2017,36 (6):44−48.

    [21]

    Meng S,Ma HB,Li ZS,Yang FC,Wang SK,Lu JK. Impacts of nitrogen on physiological interactions of the hemiparasitic Santalum album and its N2-fxing host Dalbergia odorifera[J]. Trees,2021,35 (3):1039−1051. doi: 10.1007/s00468-021-02103-0

    [22]

    Yao X,Lan Y,Liao L,Huang Y,Yu S,et al. Effects of nitrogen supply rate on photosynthesis,nitrogen uptake and growth of seedlings in a Eucalyptus/Dalbergia odorifera intercropping system[J]. Plant Biol,2022,24 (1):192−204. doi: 10.1111/plb.13341

    [23]

    Xiang LS,Miao LF,Yang F. Drought and nitrogen application modulate the morphological and physiological responses of Dalbergia odorifera to different niche neighbors[J]. Front Plant Sci,2021,12:664122. doi: 10.3389/fpls.2021.664122

    [24] 周璋. 氮磷添加对海南热带山地雨林碳循环的影响[D]. 北京: 北京大学, 2013: 1−137.
    [25] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 74−77.
    [26] 崔豫川,张文辉,李志萍. 干旱和复水对栓皮栎幼苗生长和生理特性的影响[J]. 林业科学,2014,50(7):66−73.

    Cui YC,Zhang WH,Li ZP. Effects of drought stress and rewatering on growth and physiological characteristics of Quercus variabilis seedlings[J]. Scientia Silvae Sinicae,2014,50 (7):66−73.

    [27] 王铭涵,丁玎,张晨禹,高羲之,陈建姣,等. 干旱胁迫对茶树幼苗生长及叶绿素荧光特性的影响[J]. 茶叶科学,2020,40(4):478−491. doi: 10.3969/j.issn.1000-369X.2020.04.006

    Wang MH,Ding D,Zhang CY,Gao XZ,Chen JJ,et al. Effects of drought stress on growth and chlorophyll fluorescence characteristics of tea seedlings[J]. Journal of Tea Science,2020,40 (4):478−491. doi: 10.3969/j.issn.1000-369X.2020.04.006

    [28]

    Xu NN,Guo WH,Liu J,Du N,Wang RQ. Increased nitrogen deposition alleviated the adverse effects of drought stress on Quercus variabilis and Quercus mongolica seedlings[J]. Acta Physiol Plant,2015,37 (6):107. doi: 10.1007/s11738-015-1853-4

    [29]

    Zhou XB,Zhang YM,Ji XH,Downing A,Serpe M. Combined effects of nitrogen deposition and water stress on growth and physiological responses of two annual desert plants in northwestern China[J]. Environ Exp Bot,2011,74:1−8. doi: 10.1016/j.envexpbot.2010.12.005

    [30] 姚春娟,郭圣茂,马英超,赖晓莲,杨肖华. 干旱胁迫对4种决明属植物光合作用和叶绿素荧光特性的影响[J]. 草业科学,2017,34(9):1880−1888.

    Yao CJ,Guo SM,Ma YC,Lai XL,Yang XH. Effect of drought stress on characteristics of photosynthesis and chlorophyll fluorescence of four species of Cassia[J]. Pratacultural Science,2017,34 (9):1880−1888.

    [31] 李泽,谭晓风,卢锟,张琳,龙洪旭,等. 干旱胁迫对两种油桐幼苗生长、气体交换及叶绿素荧光参数的影响[J]. 生态学报,2017,37(5):1515−1524.

    Li Z,Tan XF,Lu K,Zhang L,Long HX,et al. Influence of drought stress on the growth,leaf gas exchange,and chlorophyll fluorescence in two varieties of tung tree seedlings[J]. Acta Ecologica Sinica,2017,37 (5):1515−1524.

    [32] 吴敏,邓平,赵英,赵仕花,陈金妮,等. 喀斯特干旱环境对青冈栎叶片生长及叶绿素荧光动力学参数的影响[J]. 应用生态学报,2019,30(12):4071−4081. doi: 10.13287/j.1001-9332.201912.001

    Wu M,Deng P,Zhao Y,Zhao SH,Chen JN,et al. Effects of drought on leaf growth and chlorophyll fluorescence kinetics parameters in Cyclobalanopsis glauca seedlings of Karst areas[J]. Chinese Journal of Applied Ecology,2019,30 (12):4071−4081. doi: 10.13287/j.1001-9332.201912.001

    [33] 钟小莉,马晓东,吕豪豪,朱成刚,杨余辉. 干旱胁迫下氮素对胡杨幼苗生长及光合的影响[J]. 生态学杂志,2017,36(10):2777−2786. doi: 10.13292/j.1000-4890.201710.029

    Zhong XL,Ma XD,Lü HH,Zhu CG,Yang YH. Effect of nitrogen on growth and photosynthesis of Populus euphratica seedlings under drought stress[J]. Chinese Journal of Ecology,2017,36 (10):2777−2786. doi: 10.13292/j.1000-4890.201710.029

    [34] 李志元,江虹,王亚楠,秦亚楠,余婷,等. 施氮与水分胁迫对雪菊幼苗生长及生理的影响[J]. 新疆农业科学,2020,57(1):127−138.

    Li ZY,Jiang H,Wang YN,Qin YN,Yu T,et al. Effects of water stress and nitrogen application on growth and physiology of Coreopsis tinctoria seedlings[J]. Xinjiang Agricultural Sciences,2020,57 (1):127−138.

    [35]

    Souza BD,Meiado MV,Rodrigues BM,Santos MG. Water relations and chlorophyll fluorescence responses of two leguminous trees from the Caatinga to different watering regimes[J]. Acta Physiol Plant,2010,32 (2):235−244. doi: 10.1007/s11738-009-0394-0

    [36] 杨曾奖,徐大平,陈文平,黄烈健,李尚均,陈源. 华南地区桉树/相思混交种植的林木生长效应[J]. 应用生态学报,2009,20(10):2339−2344. doi: 10.13287/j.1001-9332.2009.0338

    Yang CJ,Xu DP,Chen WP,Huang LJ,Li SJ,Chen Y. Growth effect of eucalyptus-acacia mixed plantation in South China[J]. Chinese Journal of Applied Ecology,2009,20 (10):2339−2344. doi: 10.13287/j.1001-9332.2009.0338

    [37] 许峻模,潘婷,龙佳峰,汤文艳,田诗韵,叶绍明. 施氮及不同根系分隔模式对尾叶桉和降香黄檀幼苗生长及叶片生理特性的影响[J]. 西北植物学报,2018,38(6):1128−1137. doi: 10.7606/j.issn.1000-4025.2018.06.1128

    Xu JM,Pan T,Long JF,Tang WY,Tian SY,Ye SM. Effect of nitrogen application on the growth and leaf physiological traits of Eucalyptus urophylla and Dalbergia odorifera seedlings under different root partitioning patterns[J]. Acta Botanica Boreali-Occidentalia Sinica,2018,38 (6):1128−1137. doi: 10.7606/j.issn.1000-4025.2018.06.1128

  • 期刊类型引用(2)

    1. 唐莹莹,陈永森,彭鹏,唐玉娟,李翔,冉梦阳,覃昱茗,郭丽梅,赵英,莫永龙,黄国弟,李日旺. 大棚避雨栽培对芒果叶片表观特征和叶绿素荧光特性的影响. 分子植物育种. 2024(10): 3348-3354 . 百度学术
    2. 刘延莉. 不同育苗方式对杜松出苗率及幼苗生长的影响. 绿色科技. 2023(23): 107-109+113 . 百度学术

    其他类型引用(2)

图(3)  /  表(5)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  42
  • PDF下载量:  37
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-09-19
  • 修回日期:  2022-10-27
  • 网络出版日期:  2023-07-02
  • 刊出日期:  2023-06-29

目录

/

返回文章
返回