Differential thermal analysis on the freezing dynamics of Chimonanthus praecox and Photinia serrulata stems
-
摘要: 在(0.66 ±0.2)℃/min(0℃~-20℃)的降温速度下,采用高分辨率差热分析法分别对石楠(Photinia serrulata Lindl.)和蜡梅(Chimonanthus praecox(L.)Link)活体幼茎和经过10 min高温煮沸的幼茎在结冰过程中的热力学行为进行分析,并根据茎的形态解剖结构对他们的结冰特征进行研究。结果显示:石楠和蜡梅的活体幼茎在结冰过程中的差热扫描曲线均出现3个放热峰;而经过高温杀死后的茎仅出现1个单放热峰。分析结果表明,2种植物活体幼茎的3个放热峰可能与其木质部、质外体、韧皮部、形成层的结冰、脱水以及髓组织的结冰、脱水过程有关。进一步采用生理盐水浸湿的滤纸进行模拟实验,结果发现差热扫描曲线出现与高温杀死的茎类似的放热峰。实验结果表明,采用高分辨率差热分析法可以探测植物组织结冰过程中的放热强度、结冰温度及其与结冰动力学过程相关的大量细节,适用于植物的结冰动力学分析。Abstract: At a cooling rate of (0.66 ±0.2)℃/min, the thermodynamic behavior of living and heat-killed (100℃ for 10 min) young stems of Photinia serrulata Lindl and Chimonanthus praecox (L.) Link. were investigated using high-resolution differential thermal analysis (DTA) during freezing from 0℃--20℃. The freezing features of the stems were also analyzed based on their morphological structures. The DTA curves from living stems of P. serrulata and C. praecox showed three exothermic peaks, whereas those from heat-killed stems showed one exothermic peak. Based on the dynamics of the exotherms, structures of the stems, and thermal conductance, the three exothermic peaks from living tissues likely represented the freezing process in the stems in the following order:freezing of apoplastic water, freezing dehydration of cambium and phloem, and finally freezing dehydration of pith cells. The simulation of uniform tissue sap using filter papers drenched with normal saline also showed a single exothermic peak, which was similar to the thermal behavior of the killed stems, indicating the freezing of a solution with no isolation of the cell membrane. These results showed that many details on heat release, freezing temperature, and dynamics of the freezing process in tissues can be revealed by DTA, which is thus suitable for analysis of freezing dynamics in plants.
-
-
[1] Sklenář P, Kučerová A, Macek P, Macková J. The frost-resistance mechanism in páramo plants is related to geographic origin[J]. New Zeal J Bot, 2012, 50(4):391-400.
[2] Briceño VF, Harris-pascal D, Nicotra AB, Williams E, Balla MC. Variation in snow cover drives differences in frost resistance in seedlings of the alpine herb Aciphylla glacialis[J]. Environ Exp Bot, 2014, 106:174-181.
[3] Gusta LV, Wisniewski M. Understanding plant cold hardiness, an opinion[J]. Physiol Plant, 2013, 147(1):4-14.
[4] Martin M, Gavazov K, Körner C, Hattenschwiler S, Rixen C. Reduced early growing season freezing resistance in alpine treeline plants under elevated atmospheric CO2[J]. Global Change Biol, 2010, 16(3):1057-1070.
[5] Koehler K, Center A, Cavender-bares J. Evidence for a freezing tolerance-growth rate trade-off in the live oaks (Quercus series Virentes) across the tropical-temperate divide[J]. New Phytol, 2012, 193(3):730-744.
[6] Sakai A, Larcher W. Frost Survival of Plants:Responses and Adaptation to Freezing Stress[M]. Berlin:Springer-Verlag Berlin Heidelberg, 1987:1-321.
[7] Miura K, Furumoto T. Cold signaling and cold response in plants[J]. Int J Mol Sci, 2013, 14(3):5312-5337.
[8] 袁金凤, 牛亚洁, 陈红贤, 董倩倩, 范亚丽, 刘忠华. 春季-冻融交替时期9种落叶及半常绿小灌木抗寒性综合评价[J]. 植物科学学报, 2014, 32(6):630-637. Yuan JF, Niu YJ, Chen HX, Dong QQ, Fan YL, Liu ZH. Comprehensive evaluation on cold resistance of nine kinds of deciduous and semi-evergreen dwarf shrubs from the freeze to melt period in spring[J]. Plant Science Journal, 2014, 32(6):630-637.
[9] Taiz L, Zeiger E. Plant Physiology[M]. 5th ed. New York:Sinauer Associates Incorporated, 2010.
[10] Li PH, Sakai A. Plant Cold Hardiness and Freezing Stress:Mechanisms and Crop Implications[M]. Cambridge:Academic Press, 1978.
[11] Li PH, Christersson L. Advances in Plant Cold Hardiness[M]. Boca Raton:CRC Press, 1993.
[12] Arias NS, Bucci SJ, Scholz FG, Goldstein G. Freezing avoidance by supercooling in Olea europaea cultivars:the role of apoplastic water, solute content and cell wall rigidity[J]. Plant Cell Environ, 2015, 38(10):2061-2070.
[13] Kuprian E, Munkler C, Resnyak A, Zimmermann S, Tuong TD, et al. Complex bud architecture and cell-specific chemical patterns enable supercooling of Picea abies bud primordia[J]. Plant Cell Environ, 2017, 40:3101-3112.
[14] Kuprian E, Tuong TD, Pfaller K, Wagner J, Livingston DP, et al. Persistent supercooling of reproductive shoots is enabled by structural ice barriers being active despite an intact xylem connection[J]. PLoS One, 2016, 11(9):e0163160.
[15] 董红业, 孙万仓, 刘自刚, 张正丽, 杨刚, 等. 自交对白菜型冬油菜生理生化特性及抗寒性的影响[J]. 西北植物学报, 2014, 34(11):2277-2282. Dong HY, Sun WC, Liu ZG, Zhang ZH, Yang G, et al. Effect of selfing on physiological and biochemical characteristics and cold resistance of winter turnip rape (Brassica campestris L.)[J]. Acta Bot Boreali-Occident Sin, 2014, 34(11):2277-2282.
[16] 杨玉珍, 雷志华, 彭方仁. 低温诱导蛋白及其与植物的耐寒性研究进展[J]. 西北植物学报, 2007, 27(2):421-428. Yang YZ, Lei ZH, Peng FR. Research advances about low-temperature-induced proteins and the cold tolerance in plants[J]. Acta Bot Boreali-Occident Sin, 2007, 27(2):421-428.
[17] Melissa B, Walker VK. Ice-binding proteins in plants[J]. Front Plant Sci, 2017, 8:2153-2162.
[18] Wisniewski M, Gusta L, Neuner G. Adaptive mechanisms of freeze avoidance in plants:a brief update[J]. Environ Exp Bot, 2014, 99:133-140.
[19] Los DA, Mironov KS, Allakhverdiev SI. Regulatory role of membrane fluidity in gene expression and physiological functions[J]. Photosynthesis Research, 2013, 116(2-3):489-509.
[20] Shahandashti SSK, Amiri RM, Zeinali H, Ramezanpour SS. Change in membrane fatty acid compositions and cold-induced responses in chickpea[J]. Mol Bio Rep, 2013, 40(2):893-903.
[21] 冯兆忠, 王静, 冯宗炜. 三唑酮对黄瓜幼苗生长及抗寒性的影响[J]. 应用生态学报, 2003, 14(10):1637-1640. Feng ZZ, Wang J, Feng ZW. Effect of triadimefon on cucumber seedlings growth and their resistance to chilling injury[J]. Chin J App Ecol, 2003, 14(10):1637-1640.
[22] Riikonen J, Kontunen-soppela S, Vapaavuori E, Tervahauta A, Tuomainen M, et al. Carbohydrate concentrations and freezing stress resistance of silver birch buds grown under elevated temperature and ozone[J]. Tree Physiol, 2013, 33(3):311-319.
[23] Asahin AE. The freezing process of plant cells[J]. Contrib Inst Low Temp Sci, 1956, 10:83-126.
[24] Pearce RS. Extracellular ice and cell shape in frost-stressed cereal leaves:A low-temperature scanning-electron-microscopy study[J]. Planta, 1988, 175(3):313-24.
[25] Pearce RS. Plant freezing and damage[J]. Ann Bot, 2001, 87(3):417-424.
[26] Diller KR. Intracellular freezing, effect of extracellular supercooling[J]. Cryobiology, 1975, 12(5):480-485.
[27] Zhu JJ, Beck E. Water relations of Pachysandra leaves during freezing and thawing:Evidence for a negative pressure potential alleviating freeze-dehydration stress[J]. Plant Plysiol, 1991, 97:1146-1153.
[28] RajashekAR CB, Burke MJ. Freezing characteristics of rigid plant tissues:development of cell tension during extracellular freezing[J]. Plant Plysiol, 1996, 111(2):597-603.
[29] 于瑞凤, 朱建军. 女贞和冬青卫矛叶片低温下胞外结冰模式的热力学新证据[J]. 植物学报, 2018, 53(2):203-211. Yu RF, Zhu JJ. New evidence for the mode of extracellular freezing in leaves of Ligustrum lucidum and Euonymus japonicus under low temperatures[J]. Chinese Bulletin of Botany, 2018, 53(2):203-211.
[30] Ball MC, Wolfe J, Canny M, Hofmann M, Nicotra AB. Space and time dependence of temperature and freezing in evergreen leaves[J]. Funct Plant Biol, 2002, 29(11):1259-1272.
[31] Stier JC, Filiault DL, Wisniewski M, Palta JP. Visualization of freezing progression in turfgrasses using infrared video thermography[J]. Crop Sci, 2003, 43(1):415-420.
[32] Hacker J, Neuner G. Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis (IDTA)[J]. Tree Physiol, 2007, 27(12):1661-1670.
-
期刊类型引用(9)
1. 王珺瑶,李艳艳,郑祥源,张志铭,钱建强,赵勇. 施氮下接种丛枝菌根真菌对太行山南麓典型灌木荆条生长性状的影响. 内蒙古大学学报(自然科学版). 2024(01): 74-81 . 百度学术
2. 林玲,张孟文,陈飞飞,黄川腾,董晓娜,陈琳. 国家二级保护植物降香黄檀繁育技术研究进展. 山西农业大学学报(自然科学版). 2024(02): 1-9 . 百度学术
3. 李大东,王海波,杨帆,苗灵凤,张娟,郭璐瑶,向丽珊. 富营养化水体水淹和水淹后干旱对降香黄檀生理生态的影响. 热带亚热带植物学报. 2024(05): 651-659 . 百度学术
4. 杜旭龙,蔡世锋,罗素珍,刘源豪,裴蕴,黄锦学,杨智杰,熊德成. 增温对林木生物量及其分配特征影响的研究进展. 生态学杂志. 2024(10): 3180-3190 . 百度学术
5. 李昀奕,郑矜,严晓艳,李霜,罗林,童晋,赵春章. 云杉和华西箭竹叶际与根际细菌群落对增温的响应. 植物生态学报. 2024(12): 1692-1707 . 百度学术
6. 于鑫磊,苑俊风,刘冬伟,陈金辉,闫巧玲. 野外土壤增温对胡桃楸幼苗生长和生理特性的影响. 应用生态学报. 2023(01): 11-17 . 百度学术
7. 易红芳. 不同施氮水平对云杉幼苗生长及生理特性的影响. 乡村科技. 2023(08): 145-147 . 百度学术
8. 李丽君,苗灵凤,李大东,杨帆. 干旱、施氮对降香黄檀-橡胶树幼苗生长和叶绿素荧光特性的影响. 植物科学学报. 2023(03): 358-369 . 本站查看
9. 姬建波,何禾,宋晓伟,谢晓蓉,杨宗德. 臭氧胁迫对两种榕树幼苗BVOCs释放的短期影响. 热带生物学报. 2023(06): 602-613 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 532
- HTML全文浏览量: 1
- PDF下载量: 504
- 被引次数: 13