Cloning and expression analysis of the CyfaSTK gene from Cymbidium faberi
-
摘要: 采用同源克隆的方法,从蕙兰(Cymbidium faberi Rolfe)花芽中克隆获得CyfaSTK基因的cDNA序列,并对其进行生物信息学分析及基因表达分析。结果显示,该基因全长843 bp,其中开放阅读框(ORF)长705 bp,共编码234个氨基酸和1个终止密码子。同源蛋白序列比对及分子系统发育分析结果表明,CyfaSTK蛋白属于D类MADS-box转录因子STK-like进化系,含有MADS、I、K和C等4个结构域,其C末端转录激活区含有2个保守的基元:AG motifⅠ和AG motifⅡ,此外,还具有一个在天门冬目植物中相对保守的基元MD motif。基因表达的组织特异性分析结果显示:蕙兰CyfaSTK基因在花萼、花瓣、唇瓣、药帽、子房中均有表达,但在叶片中不表达,其中在子房中的表达量与其他组织相比,差异达到极显著水平;CyfaSTK在花芽经过休眠后的萌动期表达量最高,且在开花当天该基因表达量有上升趋势。研究结果表明CyfaSTK基因不仅参与调控蕙兰花器官的发育过程,且对子房及合蕊柱的正常发育具有重要作用。
-
关键词:
- 蕙兰 /
- 花发育 /
- MADS-box基因 /
- CyfaSTK基因
Abstract: The cDNA sequence of the CyfaSTK gene (GenBank accession number:MH917915.1) was cloned from the flower bud of Cymbidium faberi Rolfe by homologous cloning. Results showed that the gene was 843 bp in length and the open reading frame (ORF) was 705 bp long, encoding a total of 234 amino acids and a stop codon. Molecular phylogenetic analysis and homologous protein comparison showed that the CyfaSTK protein belonged to the transcription factor STK-like evolution line of the AG subfamily of the D-class MADS-box gene family, which contained four distinct domains of MADS, I, K, and C terminal. The C terminal transcriptional activation region contained two conserved motifs:i.e., AG motifⅠ and AG motifⅡ. In addition, there was also a relatively conserved MD motif in Asparagales plants. Tissue specificity analysis showed that the C. faberi CyfaSTK gene was expressed in sepals, petals, lips, anther caps, gynostemia, and ovaries, but not in juvenile leaves. Expression of the C. faberi CyfaSTK gene in the ovary was significantly higher than that in other tissues. Among the dynamic changes in the flower bud at different developmental stages, the expression of CyfaSTK was the highest at the germination stage after dormancy and increased on the day of flowering. These results suggest that the D-class CyfaSTK gene not only regulates organ development in C. faberi, but also plays an important role in the normal development of the gynostemium and ovary.-
Keywords:
- Cymbidium faberi /
- Flower development /
- MADS-box gene /
- CyfaSTK gene
-
-
[1] Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, et al. Assessing the redundancy of MADS-box genes during carpel and ovule development[J]. Nature, 2003, 424(6944):85-88.
[2] Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, et al. MADS-box protein complexes control carpel and ovule development in Arabidopsis[J]. Plant Cell, 2003, 15(11):2603-2611.
[3] Song IJ, Nakamura T, Fukuda T, Yokoyama J, Ito T, et al. Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis[J]. Dev Genes Evol, 2006, 216(6):301-313.
[4] Skipper M, Johansen LB, Pedersen KB, Frederiksen S, Johansen BB. Cloning and transcription analysis of an AGAMOUS- and SEEDSTICK ortholog in the orchid Dendro-bium thyrsiflorum (Reichb. f.)[J]. Gene, 2006, 366(2):266-274.
[5] Liu ZX, Fei Y, Zhang KB, Fang ZW. Ectopic expression of a Fagopyrum esculentum APETALA1 ortholog only rescues sepal development in Arabidopsis ap1 mutant[J]. Int J Mol Sci, 2019, 20(8):1-12.
[6] Riechmann JL, Krizek BA, Meyerowitz EM. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS[J]. Proc Natl Acad Sci USA, 1996, 93(10):4793-4798.
[7] Yang Y, Jack T. Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins[J]. Plant Mol Biol, 2004, 55(1):45-59.
[8] Kim S, Yoo MJ, Albert VA, Farris JS, Soltis PS, Soltis DE. Phylogeny and diversification of B-function MADS-box genes in angiosperms:evolutionary and functional implications of a 260-million-year-old duplication[J]. Am J Bot, 2004, 91(12):2102-2118.
[9] Kramer EM, Jaramillo MA, Di Stilio VS. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms[J]. Genetics, 2004, 166(2):1011-1023.
[10] Yun PY, Kim SY, Ochiai T, Fukuda T, Ito T, et al. AVAG2 is a putative D-class gene from an ornamental asparagus[J]. Sex Plant Reprod, 2004, 17(3):107-116.
[11] Salemme M, Sica M, Gaudio L, Aceto S. The OitaAG and OitaSTK genes of the orchid Orchis italica:a comparative analysis with other C- and D-class MADS-box genes[J]. Mol Biol Rep, 2013, 40(5):3523-3535.
[12] Hsu HF, Hsieh WP, Chen MK, Chang YY, Yang CH. C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana[J]. Plant Cell Physiol, 2010, 51(6):1029-1045.
[13] Chen YY, Lee PF, Hsiao YY, Wu WL, Pan ZJ, et al. C- and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynoste-mium and ovule development[J]. Plant Cell Physiol, 2012, 53(6):1053-1067.
[14] Lopez DZP, Wittich P, Enrico PM, Rigola D, Del BI, et al. OsMADS13, a novel rice MADS-box gene expressed during ovule development[J]. Dev Genet, 1999, 25(3):237-244.
[15] Dreni L, Jacchia S, Fornara F, Fornari M, Ouwerkerk PB, et al. The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice[J]. Plant J, 2007, 52(4):690-699.
[16] Yu QY, Steiger D, Kramer EM, Moore PH, Ming R. Floral MADS-box genes in trioecious papaya:characterization of AG and AP1 subfamily genes revealed a sex-type-specific gene[J]. Tropical Plant Biol, 2008, 1(2):97-107.
[17] Heijmans K, Ament K, Rijpkema AS, Zethof J, Wolters-Arts M, et al. Redefining C and D in the petunia ABC[J]. Plant Cell, 2012, 24(6):2305-2317.
[18] Tsai WC, Hsiao YY, Pan ZJ, Kuoh CS, Chen WH, Chen HH. The role of ethylene in orchid ovule development[J]. Plant Sci, 2008, 175(1/2):98-105.
-
期刊类型引用(15)
1. 张少纯,何至杭,曾婷婷,饶雯青,王艺颖,莫其锋. 铁刀木幼苗生长及不同器官非结构性碳水化合物、氮、磷对磷添加的响应. 福建农林大学学报(自然科学版). 2025(02): 217-229 . 百度学术
2. 董佳乐,许涵,解亚鑫,陈洁,李艳朋,雷婕. 氮添加对不同氮需求豆科植物幼苗根系形态性状和根叶养分含量的影响. 生态学杂志. 2024(05): 1255-1262 . 百度学术
3. 王小文,孙海龙,肖明砾. 生态护岸客土营养元素对紫穗槐幼苗生长的影响. 水土保持应用技术. 2024(05): 1-4 . 百度学术
4. 叶冬梅,余恩萍,王家彬,朱韦光,杜敏茜,王峥峰. 中山五桂山重点保护植物软荚红豆的群落学特征. 热带林业. 2023(02): 65-69 . 百度学术
5. 杜旭龙,余恒,高艳丽,刘小飞,黄锦学,熊德成. 氮沉降对杉木幼树生物量及其分配的影响. 森林与环境学报. 2023(05): 523-529 . 百度学术
6. 钟珍梅,杨庆,翁伯琦,李春燕. 南方丘陵区施肥量与2种决明生长性能关系分析. 草地学报. 2023(10): 3085-3093 . 百度学术
7. 苏炜,陈平,吴婷,刘岳,宋雨婷,刘旭军,刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响. 植物生态学报. 2023(08): 1094-1104 . 百度学术
8. 余梦林,周金木,杨帆,韩峰,李有春,胡生燕,汤东生. 宽叶酢浆草对种植密度、氮肥和间作的适应特征. 杂草学报. 2023(04): 44-52 . 百度学术
9. 郭璐瑶,苗灵凤,李大东,向丽珊,杨帆. 施氮和增温对降香黄檀幼苗生长发育和生理特征的影响. 植物科学学报. 2022(02): 259-268 . 本站查看
10. 张雨. 氮对樟子松幼苗生长及生理特性的影响. 绿色科技. 2022(19): 84-86+90 . 百度学术
11. 陈昱东,吕光辉,张磊,蒋腊梅,王恒方. 荒漠植物功能性状和生物量对土壤水盐环境的响应. 新疆农业科学. 2022(10): 2574-2584 . 百度学术
12. 高苑苑,车路璐,彭培好,李景吉. 增温加氮对两种不同来源加拿大一枝黄花子一代生长的影响. 东北林业大学学报. 2021(08): 51-55 . 百度学术
13. 刘幸红,张文馨,黄雯佳,马海林,潘亚冬,刘方春,刘翠兰,燕丽萍,吴德军. 容器育苗基质对蓉城竹(Phyllostachys bissetii)生长的影响. 中国农学通报. 2021(25): 47-51 . 百度学术
14. 唐胶,彭祚登,贾清棋,熊建军,刘春和,冯天爽,王海东. 添加城市排水污泥对竹柳和欧美107杨嫩枝扦插苗生长及养分积累的影响. 北京林业大学学报. 2020(10): 84-95 . 百度学术
15. 王革平. 氮磷钾肥配施对草原植物群落生物量的影响. 草原与草业. 2020(04): 27-31 . 百度学术
其他类型引用(9)
计量
- 文章访问数: 594
- HTML全文浏览量: 0
- PDF下载量: 589
- 被引次数: 24