高级检索+

毛竹bHLH转录因子的鉴定及其在干旱和盐胁迫条件下的表达分析

徐秀荣, 杨克彬, 王思宁, 高志民

徐秀荣, 杨克彬, 王思宁, 高志民. 毛竹bHLH转录因子的鉴定及其在干旱和盐胁迫条件下的表达分析[J]. 植物科学学报, 2019, 37(5): 610-620. DOI: 10.11913/PSJ.2095-0837.2019.50610
引用本文: 徐秀荣, 杨克彬, 王思宁, 高志民. 毛竹bHLH转录因子的鉴定及其在干旱和盐胁迫条件下的表达分析[J]. 植物科学学报, 2019, 37(5): 610-620. DOI: 10.11913/PSJ.2095-0837.2019.50610
Xu Xiu-Rong, Yang Ke-Bin, Wang Si-Ning, Gao Zhi-Min. Identification of bHLH transcription factors in moso bamboo (Phyllostachys edulis) and their expression analysis under drought and salt stress[J]. Plant Science Journal, 2019, 37(5): 610-620. DOI: 10.11913/PSJ.2095-0837.2019.50610
Citation: Xu Xiu-Rong, Yang Ke-Bin, Wang Si-Ning, Gao Zhi-Min. Identification of bHLH transcription factors in moso bamboo (Phyllostachys edulis) and their expression analysis under drought and salt stress[J]. Plant Science Journal, 2019, 37(5): 610-620. DOI: 10.11913/PSJ.2095-0837.2019.50610
徐秀荣, 杨克彬, 王思宁, 高志民. 毛竹bHLH转录因子的鉴定及其在干旱和盐胁迫条件下的表达分析[J]. 植物科学学报, 2019, 37(5): 610-620. CSTR: 32231.14.PSJ.2095-0837.2019.50610
引用本文: 徐秀荣, 杨克彬, 王思宁, 高志民. 毛竹bHLH转录因子的鉴定及其在干旱和盐胁迫条件下的表达分析[J]. 植物科学学报, 2019, 37(5): 610-620. CSTR: 32231.14.PSJ.2095-0837.2019.50610
Xu Xiu-Rong, Yang Ke-Bin, Wang Si-Ning, Gao Zhi-Min. Identification of bHLH transcription factors in moso bamboo (Phyllostachys edulis) and their expression analysis under drought and salt stress[J]. Plant Science Journal, 2019, 37(5): 610-620. CSTR: 32231.14.PSJ.2095-0837.2019.50610
Citation: Xu Xiu-Rong, Yang Ke-Bin, Wang Si-Ning, Gao Zhi-Min. Identification of bHLH transcription factors in moso bamboo (Phyllostachys edulis) and their expression analysis under drought and salt stress[J]. Plant Science Journal, 2019, 37(5): 610-620. CSTR: 32231.14.PSJ.2095-0837.2019.50610

毛竹bHLH转录因子的鉴定及其在干旱和盐胁迫条件下的表达分析

基金项目: 

十二五农村领域国家科技计划项目(2015BAD04B0101)。

详细信息
    作者简介:

    徐秀荣(1990-),女,博士研究生,研究方向为林木遗传育种(E-mail:xuxiurong@icbr.ac.cn)。

    通讯作者:

    高志民,E-mail:gaozhimin@icbr.ac.cn

  • 中图分类号: Q943.2

Identification of bHLH transcription factors in moso bamboo (Phyllostachys edulis) and their expression analysis under drought and salt stress

Funds: 

This work was supported by a grant from the Sub-Project of the National Science and Technology Support Plan of the Twelfth Five-Year in China (2015BAD04B0101).

  • 摘要: 以毛竹(Phyllostachys edulis(Carr.)Lehaie)为材料,利用生物信息学方法,在基因组水平上对其bHLH基因家族成员进行鉴定和分析,并对不同组织中该基因的表达模式以及部分基因在干旱和高盐胁迫条件下的表达情况进行研究。结果显示:在毛竹中共鉴定出153个具有完整保守结构域的bHLH基因家族成员(PebHLH001~PebHLH153),这些基因内含子数量为0~14,其中137个基因的启动子均含有与干旱、盐胁迫相关的顺式作用元件;PebHLHs编码的蛋白长度为134~1401 aa;bHLH家族成员的系统进化分析结果表明,153个PebHLHs可被分为17个亚类,其中C亚类的成员数量最多,为42个;基于转录组数据的表达谱分析结果发现,有151个PebHLHs在毛竹不同组织和不同生长发育时期有不同程度的表达量;实时荧光定量PCR实验结果显示,在干旱和盐胁迫处理后,分别有14和13个PebHLHs基因的表达量上调,分别有2和3个表达量下调,但表达模式存在一定差异,说明他们在应答干旱和盐胁迫过程中可能发挥不同的作用。
    Abstract: The transcription factors of the bHLH family have important regulatory effects on plant growth and development. Here, Phyllostachys edulis (Carr.) Lehaie was used as experimental material to understand the characteristics of bHLH family members in bamboo and explore their expression patterns under adverse conditions. Bioinformatics were used to identify and systematically analyze the bHLH family members at the genomic level, and their expression patterns in different tissues and expression of several bHLH genes under high salt and drought stress conditions were further analyzed. Our results identified 153 bHLH transcription factor genes (PebHLH001-PebHLH153) with complete conserved domains in Ph. edulis. The number of introns in PebHLHs ranged from 0 to 14. The drought and salt stress related cis-acting elements were found in the promoters of 137 PebHLHs. The length of the proteins encoded by PebHLHs ranged from 134 aa (PebHLH005) to 1401 aa (PebHLH083) with molecular weights of 13.4 to 152.6 kD, respectively. Based on phylogenetic analysis of bHLHs in Ph. edulis and Oryza sativa L., 153 PebHLHs were clustered into 17 subgroups, with the C subgroup containing the highest number (42). According to expression profile analysis of transcriptome data, 151 PebHLHs exhibited different expression levels in different tissues and growth stages of Ph. edulis. Real-time quantitative polymerase chain reaction (PCR) showed that 14 PebHLHs were up-regulated and two PebHLHs were down-regulated after drought stress, whereas 13 were up-regulated and three were down-regulated after salt stress. However, there were some differences in the expression patterns of 16 PebHLHs, indicating that they may play different roles in response to drought and salt stress.
  • [1]

    Toledo-Ortiz G, Huq E, Quail PH. The Arabidopsis basic/helix-loop-helix transcription factor family[J]. Plant Cell, 2003, 15(8):1749-1770.

    [2]

    Murre C, Mccaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer bin-ding, daughterless, MyoD, and myc proteins[J]. Cell, 1989, 56(5):777-783.

    [3]

    Atchley WR, Terhalle W, Dress A. Positional dependence, cliques, and predictive motifs in the bHLH protein domain[J]. J Mol Evol, 1999, 48(5):501-516.

    [4]

    Sailsbery JK, Dean RA. Accurate discrimination of bHLH domains in plants, animals, and fungi using biologically meaningful sites[J]. BMC Evol Biol, 2012, 12(1):154.

    [5]

    Li XX, Duan XP, Jiang HX, Sun YJ, Tang YP, et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis[J]. Plant Physiol, 2006, 141(4):1167-1184.

    [6]

    Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, et al. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana[J]. Plant Cell, 2003, 15(11):2497-2502.

    [7]

    Song XM, Huang ZN, Duan WK, Ren J, Liu TK, et al. Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa L. ssp. Peki-nensis (Lour.) Olsson)[J]. Mol Genet Genomics, 2014, 289(1):77-91.

    [8]

    Niu X, Guan YX, Chen SK, Li HF. Genome-wide analysis of basic helix-loop-helix (bHLH) transcription factors in Brachypodium distachyon[J]. BMC Genomics, 2017, 18(1):619.

    [9]

    Mao K, Dong QL, Li C, Liu CH, Ma FW. Genome wide identification and characterization of apple bHLH transcription factors and expression analysis in response to drought and salt stress[J]. Front Plant Sci, 2017, 8:480.

    [10]

    Kondou Y, Nakazawa M, Kawashima M, Ichikawa T, Yoshizumi T, et al. RETARDED GROWTH OF EMBRYO1, a new basic helix-loop-helix protein, expresses in endosperm to control embryo growth[J]. Plant Physiol, 2008, 147(4):1924-1935.

    [11]

    Arnaud N, Girin T, Sorefan K, Fuentes S, Wood TA, et al. Gibberellins control fruit patterning in Arabidopsis thaliana[J]. Genes Dev, 2010, 24(19):2127-2132.

    [12]

    Heisler MG, Atkinson A, Bylstra YH, Walsh R, Smyth DR. SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein[J]. Development, 2001, 128(7):1089-1098.

    [13]

    Sorensen AM, Kröber S, Unte US, Huijser P, Dekker K, et al. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor[J]. Plant J, 2010, 33(2):413-423.

    [14] 何洁, 顾秀容, 魏春华, 杨小振, 李好, 等. 西瓜bHLH转录因子家族基因的鉴定及其在非生物胁迫下的表达分析[J]. 园艺学报, 2016, 43(2):281-294.

    He J, Gu XR, Wei CH, Yang XZ, Li H, et al. Identification and expression analysis under abiotic stresses of the bHLH transcription factor gene family in watermelon[J]. Acta Horticulturae Sinica, 2016, 43(2):281-294.

    [15]

    Cui X, Wang YX, Liu ZW, Wang WL, Li H, et al. Transcriptome-wide identification and expression profile analysis of the bHLH family genes in Camellia sinensis[J]. Funct Integr Genomics, 2018, 18(5):489-503.

    [16]

    Zhai Y, Zhang L, Xia C, Fu S, Zhao G, et al. The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants[J]. Biochem Biophys Res Commun, 2016, 473(4):1321-1327.

    [17]

    Wang FB, Zhu H, Chen DH, Li ZJ, Peng RH, et al. A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana[J]. Plant Cell Tiss Organ Cult, 2016, 125(2):387-398.

    [18]

    Peng ZH, Lu Y, Li LB, Zhao Q, Feng Q, et al. The draft genome of the fast growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nat Genet, 2013, 45(4):456-461.

    [19]

    Wu M, Liu HL, Han GM, Cai RH, Pan F, et al. A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants[J]. Sci Rep, 2017, 7(1):11721.

    [20]

    Li L, Mu SH, Cheng ZC, Cheng YW, Zhang Y, et al. Characterization and expression analysis of the WRKY gene family in moso bamboo[J]. Sci Rep, 2017, 7(1):6675.

    [21]

    Wu HL, Lü H, Li L, Liu J, Mu SH, et al. Genome-wide analysis of the AP2/ERF transcription factors family and the expression patterns of DREB genes in moso bamboo (Phyllostachys edulis)[J]. PLoS One, 2015, 10(5):e0126657.

    [22]

    Yang KB, Li Y, Wang SN, Xu XR, Sun HY, et al. Genome-wide identification and expression analysis of the MYB transcription factor in moso bamboo (Phyllostachys edulis)[J]. PeerJ, 2019, 6:e6242.

    [23]

    Wu M, Li Y, Chen D, Liu H, Zhu DY, et al. Genome-wide identification and expression analysis of the IQD gene fa-mily in moso bamboo (Phyllostachys edulis)[J]. Sci Rep, 2016, 6:24520.

    [24]

    Pan F, Wang Y, Liu HL, Wu M, Chu WY, et al. Genome-wide identification and expression analysis of SBP-like transcription factor genes in moso bamboo (Phyllostachys edulis)[J]. BMC Genomics, 2017, 18(1):486.

    [25]

    Zhang YT, Tang DQ, Lin XC, Ding MQ, Tong ZK. Genome-wide identification of MADS-box family genes in moso bamboo (Phyllostachys edulis) and a functional analysis of PeMADS5 in flowering[J]. BMC Plant Biol, 2018, 18(1):176.

    [26] 何龙燕, 刘武阳, 娄永峰, 肖复明. 毛竹GRF转录因子家族的全基因组鉴定与分析[J]. 植物科学学报, 2018, 36(5):713-720.

    He LY, Liu WY, Lou YF, Xiao FM. Genome wide identication and analysis of the GRF transcription factor family in moso bamboo (Phyllostachys edulis)[J]. Plant Science Journal, 2018, 36(5):713-720.

    [27] 郭安源, 朱其慧, 陈新, 罗静初. GSDS:基因结构显示系统[J]. 遗传, 2007, 29(8):1023-1026.

    Guo AY, Zhu QH, Chen X, Luo JC. GSDS:a gene structure display server[J]. Hereditas, 2007, 29(8):1023-1026.

    [28]

    Liu HL, Wu M, Li F, Gao YM, Chen F, Xiang Y. TCP transcription factors in moso bamboo (Phyllostachys edulis):Genome-wide identification and expression analysis[J]. Front Plant Sci, 2018, 9:1263.

    [29]

    Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Res, 2002, 30(1):325-327.

    [30]

    Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, et al. ExPASy:SIB bioinformatics resource portal[J]. Nucleic Acids Res, 2012, 40:597-603.

    [31]

    Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. MEME SUITE:tools for motif discovery and searching[J]. Nucleic Acids Res, 2009, 37:202-208.

    [32]

    Fan CJ, Ma JM, Guo QR, Li XT, Wang H, et al. Selection of reference genes for real-time quantitative PCR in bamboo (Phyllostachys edulis)[J]. PLoS One, 2013, 8(2):e56573.

    [33]

    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method[J]. Methods, 2001, 25(4):402-408.

    [34] 赵广枝, 孙化雨, 赵韩生, 高志民. 毛竹基因组测序及数据应用研究现状[J]. 世界竹藤通讯, 2015, 13(3):8-13.

    Zhao GZ, Sun HY, Zhao HS, Gao ZM. Research status of genomic sequencing and data application of Phyllostachys edulis[J]. World Bamboo and Rattan, 2015, 13(3):8-13.

    [35]

    Zhao HS, Gao ZM, Wang L, Wang JL, Wang SB, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)[J]. Gigascience, 2018, 7(10):1-12.

    [36]

    Chen XR, Xiong R, Liu HL, Wu M, Chen F, et al. Basic helix-loop-helix gene family:Genome wide identification, phylogeny, and expression in moso bamboo[J]. Plant Physiol Bioch, 2018, 132(11):104-119.

    [37]

    Yamaguchi-Shinozaki K, Shinozaki K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana[J]. Mol Gen Genet, 1993, 238(1-2):17-25.

    [38] 王昕嘉, 李昆志. 植物bHLH转录因子参与非生物胁迫信号通路研究进展[J]. 生命科学, 2015, 27(2):209-216.

    Wang XJ, Li KZ. Progress of plant bHLH transcription factors involved in abiotic stress signaling pathways[J]. Chinese Bulletin of Life Sciences, 2015, 27(2):209-216.

  • 期刊类型引用(15)

    1. 张少纯,何至杭,曾婷婷,饶雯青,王艺颖,莫其锋. 铁刀木幼苗生长及不同器官非结构性碳水化合物、氮、磷对磷添加的响应. 福建农林大学学报(自然科学版). 2025(02): 217-229 . 百度学术
    2. 董佳乐,许涵,解亚鑫,陈洁,李艳朋,雷婕. 氮添加对不同氮需求豆科植物幼苗根系形态性状和根叶养分含量的影响. 生态学杂志. 2024(05): 1255-1262 . 百度学术
    3. 王小文,孙海龙,肖明砾. 生态护岸客土营养元素对紫穗槐幼苗生长的影响. 水土保持应用技术. 2024(05): 1-4 . 百度学术
    4. 叶冬梅,余恩萍,王家彬,朱韦光,杜敏茜,王峥峰. 中山五桂山重点保护植物软荚红豆的群落学特征. 热带林业. 2023(02): 65-69 . 百度学术
    5. 杜旭龙,余恒,高艳丽,刘小飞,黄锦学,熊德成. 氮沉降对杉木幼树生物量及其分配的影响. 森林与环境学报. 2023(05): 523-529 . 百度学术
    6. 钟珍梅,杨庆,翁伯琦,李春燕. 南方丘陵区施肥量与2种决明生长性能关系分析. 草地学报. 2023(10): 3085-3093 . 百度学术
    7. 苏炜,陈平,吴婷,刘岳,宋雨婷,刘旭军,刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响. 植物生态学报. 2023(08): 1094-1104 . 百度学术
    8. 余梦林,周金木,杨帆,韩峰,李有春,胡生燕,汤东生. 宽叶酢浆草对种植密度、氮肥和间作的适应特征. 杂草学报. 2023(04): 44-52 . 百度学术
    9. 郭璐瑶,苗灵凤,李大东,向丽珊,杨帆. 施氮和增温对降香黄檀幼苗生长发育和生理特征的影响. 植物科学学报. 2022(02): 259-268 . 本站查看
    10. 张雨. 氮对樟子松幼苗生长及生理特性的影响. 绿色科技. 2022(19): 84-86+90 . 百度学术
    11. 陈昱东,吕光辉,张磊,蒋腊梅,王恒方. 荒漠植物功能性状和生物量对土壤水盐环境的响应. 新疆农业科学. 2022(10): 2574-2584 . 百度学术
    12. 高苑苑,车路璐,彭培好,李景吉. 增温加氮对两种不同来源加拿大一枝黄花子一代生长的影响. 东北林业大学学报. 2021(08): 51-55 . 百度学术
    13. 刘幸红,张文馨,黄雯佳,马海林,潘亚冬,刘方春,刘翠兰,燕丽萍,吴德军. 容器育苗基质对蓉城竹(Phyllostachys bissetii)生长的影响. 中国农学通报. 2021(25): 47-51 . 百度学术
    14. 唐胶,彭祚登,贾清棋,熊建军,刘春和,冯天爽,王海东. 添加城市排水污泥对竹柳和欧美107杨嫩枝扦插苗生长及养分积累的影响. 北京林业大学学报. 2020(10): 84-95 . 百度学术
    15. 王革平. 氮磷钾肥配施对草原植物群落生物量的影响. 草原与草业. 2020(04): 27-31 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  778
  • HTML全文浏览量:  4
  • PDF下载量:  833
  • 被引次数: 24
出版历程
  • 收稿日期:  2019-02-14
  • 网络出版日期:  2022-10-31
  • 发布日期:  2019-10-27

目录

    /

    返回文章
    返回