高级检索+

小麦抗条锈基因Yr69的连锁标记开发

杨文静, 乔麟轶, 李欣, 郭慧娟, 陈芳, 张树伟, 常利芳, 贾举庆, 畅志坚, 张晓军

杨文静, 乔麟轶, 李欣, 郭慧娟, 陈芳, 张树伟, 常利芳, 贾举庆, 畅志坚, 张晓军. 小麦抗条锈基因Yr69的连锁标记开发[J]. 植物科学学报, 2022, 40(2): 197-204. DOI: 10.11913/PSJ.2095-0837.2022.20197
引用本文: 杨文静, 乔麟轶, 李欣, 郭慧娟, 陈芳, 张树伟, 常利芳, 贾举庆, 畅志坚, 张晓军. 小麦抗条锈基因Yr69的连锁标记开发[J]. 植物科学学报, 2022, 40(2): 197-204. DOI: 10.11913/PSJ.2095-0837.2022.20197
Yang Wen-Jing, Qiao Lin-Yi, Li Xin, Guo Hui-Juan, Chen Fang, Zhang Shu-Wei, Chang Li-Fang, Jia Ju-Qing, Chang Zhi-Jian, Zhang Xiao-Jun. Development of linkage markers for stripe rust resistance gene Yr69 in Triticum aestivum L.[J]. Plant Science Journal, 2022, 40(2): 197-204. DOI: 10.11913/PSJ.2095-0837.2022.20197
Citation: Yang Wen-Jing, Qiao Lin-Yi, Li Xin, Guo Hui-Juan, Chen Fang, Zhang Shu-Wei, Chang Li-Fang, Jia Ju-Qing, Chang Zhi-Jian, Zhang Xiao-Jun. Development of linkage markers for stripe rust resistance gene Yr69 in Triticum aestivum L.[J]. Plant Science Journal, 2022, 40(2): 197-204. DOI: 10.11913/PSJ.2095-0837.2022.20197
杨文静, 乔麟轶, 李欣, 郭慧娟, 陈芳, 张树伟, 常利芳, 贾举庆, 畅志坚, 张晓军. 小麦抗条锈基因Yr69的连锁标记开发[J]. 植物科学学报, 2022, 40(2): 197-204. CSTR: 32231.14.PSJ.2095-0837.2022.20197
引用本文: 杨文静, 乔麟轶, 李欣, 郭慧娟, 陈芳, 张树伟, 常利芳, 贾举庆, 畅志坚, 张晓军. 小麦抗条锈基因Yr69的连锁标记开发[J]. 植物科学学报, 2022, 40(2): 197-204. CSTR: 32231.14.PSJ.2095-0837.2022.20197
Yang Wen-Jing, Qiao Lin-Yi, Li Xin, Guo Hui-Juan, Chen Fang, Zhang Shu-Wei, Chang Li-Fang, Jia Ju-Qing, Chang Zhi-Jian, Zhang Xiao-Jun. Development of linkage markers for stripe rust resistance gene Yr69 in Triticum aestivum L.[J]. Plant Science Journal, 2022, 40(2): 197-204. CSTR: 32231.14.PSJ.2095-0837.2022.20197
Citation: Yang Wen-Jing, Qiao Lin-Yi, Li Xin, Guo Hui-Juan, Chen Fang, Zhang Shu-Wei, Chang Li-Fang, Jia Ju-Qing, Chang Zhi-Jian, Zhang Xiao-Jun. Development of linkage markers for stripe rust resistance gene Yr69 in Triticum aestivum L.[J]. Plant Science Journal, 2022, 40(2): 197-204. CSTR: 32231.14.PSJ.2095-0837.2022.20197

小麦抗条锈基因Yr69的连锁标记开发

基金项目: 

山西农业大学省部共建有机旱作农业国家重点实验室自主研发项目(202002-3);山西省重点研发计划项目(201903D211003);山西农业大学生物育种工程项目(YZGC093)。

详细信息
    作者简介:

    杨文静(1995-),女,硕士研究生,研究方向为作物遗传与育种(E-mail:1541084128@qq.com)。

    通讯作者:

    张晓军,E-mail:zxjemail@163.com

  • 中图分类号: Q943.2

Development of linkage markers for stripe rust resistance gene Yr69 in Triticum aestivum L.

Funds: 

This work was supported by grants from the State Key Laboratory of Sustainable Dryland Agriculture (in preparation) of Shanxi Agricultural University (202002-3), Key Science & Technology Project in Shanxi Province (201903D211003), and Biological Breeding Engineering of Shanxi Agricultural University (YZGC093).

  • 摘要: 抗条锈病基因Yr69对我国小麦条锈菌(Puccinia striiformis f.sp.tritici)小种具有广谱抗性,在小麦抗条锈病育种中具有重要价值。为提高分子标记辅助选择育种的效率,加快Yr69在小麦抗病育种中的应用,本研究利用条锈菌小种CYR34对包含340个小麦家系的‘Taichung29/CH7086’F9代RIL (Recombinant inbred line)群体进行接种鉴定,并利用BSA-SNP (Bulked segregant analysis-single nucleotide polymorphism)技术对其抗条锈病基因进行了重新定位。抗病鉴定结果显示,RIL群体中抗感病家系的数量呈双峰分布,‘CH7086’的条锈病抗性受一个主效位点控制。BSA-SNP基因分型结果表明,多态性SNP主要集中于小麦2AS染色体末端0 ~ 30 Mb的染色体区段。在该基因组区段开发了208个SSR分子标记,利用抗感病小群体从中筛选到14个与Yr69连锁的分子标记。利用14个标记对340个RIL家系进行PCR扩增和分子作图,将Yr69定位于2AS111和2AS171之间约7.76 Mb的染色体区段,两侧连锁标记2AS111、2AS171与Yr69的连锁距离均为0.4 cM,并获得2个与Yr69共分离的分子标记2AS117和2AS127,可用于Yr69的分子标记辅助选择。
    Abstract: Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating wheat diseases in China. The Yr69 gene confers resistance to almost all Chinese P. striiformis stripe rust races, and thus has important value in the breeding of Triticum aestivum L. stripe rust resistance. To improve the efficiency of molecular marker-assisted selection and accelerate the application of Yr69 in wheat resistance breeding, this study used stripe rust race CYR34 to inoculate and identify the F9 recombinant inbred line (RIL) population of ‘Taichung29/CH7086’ containing 340 families. Bulked segregant analysis-single nucleotide polymorphism (BSA-SNP) was used to remap the stripe rust resistance gene in ‘CH7086’. Based on the disease resistance identification results, the number of resistant families and susceptible families in the RIL population exhibited a bimodal distribution, suggesting that the resistance of ‘CH7086’ to stripe rust was controlled by a major locus. The BSA-SNP results showed that the polymorphic SNPs were mainly concentrated in a 0-30 Mb section at the end of the wheat 2AS chromosome. In this segment, 208 simple sequence repeat (SSR) molecular markers were identified. Among these, 14 molecular markers linked to Yr69 were screened using a small population of resistant plants and susceptible plants. The 14 linked markers were used for linkage mapping with 340 F9 RIL population, with two markers found to be co-segregated with the Yr69 gene. Based on the Chinese spring wheat genome IWGSC Ref Seq v1.0, Yr69 was mapped to a 7.76 Mb interval between the two molecular markers 2AS111 and 2AS171, and their linkage distances with Yr69 were both 0.4 cM. Thus, two molecular markers (2AS117 and 2AS127) co-segregated with Yr69 were obtained, which not only can be used for molecular marker-assisted selection of Yr69, but also have important significance for fine mapping and cloning of the gene.
  • [1] 李汉杰, 马晓路, 刘青. 盐山县小麦条锈病的发病原因及防治措施[J]. 现代农村科技, 2022(1):38-39.
    [2] 许彦平, 万信, 金社林, 韩兰英, 姚晓红, 等. 甘肃河东地区小麦条锈病菌(Puccinia striiformis f. sp. tritici)越夏气候区划[J]. 干旱地区农业研究, 2021, 39(2):236-240.

    Xu YP, Wan X, Jin SL, Han LY, Yao XH, et al. Climatic zoning of Puccinia striiformis f. sp. tritici over-summering in hedong area of Gansu Province[J]. Agricultural Research in the Arid Areas, 2021, 39(2):236-240.

    [3]

    Jia MJ, Yang LJ, Zhang W, Garry R, Li JH, et al. Genome-wide association analysis of stripe rust resistance in modern Chinese wheat[J]. BMC Plant Biol, 2020, 20(1):1-13.

    [4] 陈文, 吴石平, 詹刚明, 王伟, 何庆才. 贵州小麦条锈菌生理小种鉴定分析[J]. 江苏农业科学, 2016, 44(9):155-157.

    Chen W, Wu SP, Zhan GM, Wang W, He QC. Identification and analysis of physiological races of wheat stripe rust in Guizhou[J]. Jiangsu Agricultural Sciences, 2016, 44(9):155-157.

    [5] 康振生, 王晓杰, 赵杰, 汤春蕾, 黄丽丽. 小麦条锈菌致病性及其变异研究进展[J]. 中国农业科学, 2015, 48(17):3439-3453.

    Kang ZS, Wang XJ, Zhao J, Tang CL, Huang LL. Advances in research of pathogen city and virulence variation of the wheat stripe rust fungus Puccinias triiformis f. sp. tritici[J]. Scientia Agricultura Sinica, 2015, 48(17):3439-3453.

    [6] 马占鸿. 中国小麦条锈病研究与防控[J]. 植物保护学报, 2018, 45(1):1-6.

    Ma ZH. Researches and control of wheat stripe rust in China[J]. Journal of Plant Protection, 2018, 45(1):1-6.

    [7] 刘博, 刘太国, 章振羽, 贾秋珍, 王保通, 等. 中国小麦条锈菌条中34号的发现及其致病特性[J]. 植物病理学报, 2017, 47(5):681-687.

    Liu B, Liu TG, Zhang ZY, Jia QZ, Wang BT, et al. Discovery and pathogenicity of CYR34, a new race of Pucci-nia striiformis f. sp. tritici in China[J].Acta Phytopathologica Sinica, 2017, 47(5):681-687.

    [8]

    Li JB, Dundas L, Dong CM, Li GR, Trethowan R, et al. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat[J]. Theor Appl Genet, 2020, 133(4):1095-1107.

    [9]

    Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L, et al. A kinase-START gene confers temperature-dependent resis-tance to wheat stripe rust[J]. Science, 2009, 323(5919):1357-1360.

    [10]

    Marchal C, Zhang JP, Phang P, Fenwick P, Steuernagel B, et al. BED-domain containing immune receptors confer diverse resistance spectra to yellow rust[J]. Nat Plants, 2018, 4(9):662-668.

    [11]

    Liu W, Frick M, Huel R, Nykiforuk CL, Wang XM, et al. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat[J]. Mol Plant, 2014, 7(12):1740-1755.

    [12]

    Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, et al. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family[J]. Nat Commun, 2018, 9(1):1-12.

    [13]

    Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat[J]. Science, 2009, 323(5919):1360-1363.

    [14]

    Zheng SG, Wu Y, Zhou M, Zeng L, Liu R, et al. Characterization and diagnostic marker development for Yr28-rga1 conferring stripe rust resistance in wheat[J]. Eur J Plant Pathol, 2019, 156(2):623-634.

    [15]

    Moore JW, Herrera-Foessel S, Lan CX, Schnippenkoetter W, Ayliffe M, et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat[J]. Nat Genet, 2015, 47(12):1494-1498.

    [16]

    Hou LY, Jia JQ, Zhang XJ, Li X, Yang ZJ, et al. Molecular mapping of the stripe rust resistance gene Yr69 on wheat chromosome 2AS[J]. Plant Dis, 2016, 100(8):1717-1724.

    [17] 凌宏清. 小麦及其近缘种基因组测序研究进展与发展趋势[J]. 麦类作物学报, 2016, 36(4):397-403.

    Ling HQ. Progress and perspectives of the genome sequencing in wheat and its relatives[J]. Journal of Triticeae Crops, 2016, 36(4):397-403.

    [18]

    Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii[J]. Nature, 2017, 551(7681):498-502.

    [19]

    International Wheat Genome Sequencing Consortium(IWGSC). Shifting the limits in wheat research and bree-ding using a fully annotated reference genome[J]. Science, 2018, 361(6403):eaar7191.

    [20] 黄苗苗, 孙振宇, 曹世勤, 贾秋珍, 刘太国, 等. 223份小麦农家品种田间抗条锈病性评价及抗病基因分子检测[J]. 植物保护学报, 2018, 45(1):90-100.

    Huang MM, Sun ZY, Cao SQ, Jia QZ, Liu TG, et al. Evaluation of the resistance of 223 wheat landraces in Gansu Province to stripe rust and molecular detection[J]. Journal of Plant Protection, 2018, 45(1):90-100.

    [21]

    Wellings CR, Bariana H. Assessment scale for recording stripe rust responses in field trials[J]. Cer Rust Rep Season, 2004, 2:1-2.

    [22]

    Ma J, Qin N, Cai B, Chen GY, Ding PY, et al. Identification and validation of a novel major QTL for all-stage stripe rust resistance on 1BL in the winter wheat line 20828[J]. Theor Appl Genet, 2019, 132(5):1363-1373.

    [23] 谭小艳, 马耀华, 郝兆祥. 4种改良CTAB法提取石榴成熟叶片DNA的比较研究[J]. 中国南方果树, 2021, 50(3):122-125.

    Tan XY, Ma YH, Hao ZX. Comparative study on DNA extraction from mature leaves of pomegranate by four modified CTAB methods[J]. South China Fruits, 2021, 50(3):122-125.

    [24]

    Wu JH, Liu SJ, Wang QL, Zeng QD, Mu JM, et al. Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes[J]. Theor Appl Genet, 2018, 131(1):43-58.

    [25]

    Yan GP, Chen XM, Line RF, Wellings CR. Resistance gene-analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust[J]. Theor Appl Genet, 2003, 106(4):636-643.

    [26] 杨梯丰, 张子怡, 董景芳, 周炼, 张少红, 等. 水稻低温发芽力QTL qLTG3-1基因内分子标记的开发及其在华南籼稻中的应用评价[J]. 广东农业科学, 2021, 48(10):32-41.

    Yang TF, Zhang ZY, Dong JF, Zhou L, Zhang SH, et al. Development of intragenic molecular marker in QTL qLTG3-1 related to low temperature germinability of rice and evaluation of its application in Indica rice of South China[J]. Guangdong Agricultural Sciences, 2021, 48(10):32-41.

    [27] 宋茂兴, 瞿会, 闫伟, 张旷野, 李凤海, 等. 2个玉米抗矮花叶病分子标记的有效性评价[J]. 植物遗传资源学报, 2016, 17(3):555-561.

    Song MX, Zhai H, Yan W, Zhang KY, Li FH, et al. Efficiency evaluation of two molecular markers linked with resistance to maize dwarf mosaic disease[J]. Journal of Plant Genetic Resources, 2016, 17(3):555-561.

    [28] 陈芳, 李欣, 乔麟轶, 李锐, 郭慧娟, 等. 抗白粉病基因PmCH1357相关分子标记验证与评价[J]. 麦类作物学报, 2020, 40(1):41-48.

    Chen F, Li X, Qiao LY, Li R, Guo HJ, et al. Evaluation and validation of molecular markers associated with powdery mildew resistance genePmCH1357[J]. Journal of Triticeae Crops, 2020, 40(1):41-48.

    [29] 张晓军, 杨文静, 畅志坚, 常利芳, 闫贵云, 等. 小麦抗条锈病基因Yr69连锁标记在育种中的应用评价[J]. 麦类作物学报, 2021, 41(4):417-423.

    Zhang XJ, Yang WJ, Chang ZJ, Chang LF, Yan GY, et al. Evaluation on the application of molecular markers linked with the wheat stripe rust resistance gene Yr69 in wheat breeding[J]. Journal of Triticeae Crops, 2021, 41(4):417-423.

    [30] 张晓军, 杨文静, 郭慧娟, 闫贵云, 李欣, 等. 小麦高代品系中抗条锈病基因Yr69的分子标记检测[J]. 植物遗传资源学报, 2020, 21(5):1295-1300.

    Zhang XJ, Yang WJ, Guo HJ, Yan GY, Li X, et al. Molecular marker detection of stripe rust resistance gene Yr69 in advanced-generation lines of wheat[J]. Journal of Plant Genetic Resources, 2020, 21(5):1295-1300.

    [31]

    Trick M, Adamski NM, Mugford SG, Jiang CC, Febrer M, et al. Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat[J]. BMC Plant Biol, 2012, 12(1):1-17.

    [32]

    Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, et al. RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic mar-kers for breeding in hexaploid wheat[J]. Plant Biotechnol J, 2015, 13(5):613-624.

    [33]

    Wu JH, Zeng QD, Wang QL, Liu SJ, Yu SZ, et al. SNP-based pool genotyping and haplotype analysis accelerate fine-mapping of the wheat genomic region containing stripe rust resistance gene Yr26[J]. Theor Appl Genet, 2018, 131(7):1481-1496.

    [34] 朱艳, 乔麟轶, 张晓军, 李欣, 杨足君, 等. 小麦成株期抗条锈病基因YrCH7056的定位及其抗源分析[J]. 华北农学报, 2018, 33(1):20-24.

    Zhu Y, Qiao LY, Zhang XJ, Li X, Yang ZJ, et al. Location and resistance analysis of stripe rust resistance gene YrCH7056 in adult plant stage of wheat[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(1):20-24.

  • 期刊类型引用(6)

    1. 童嘉琳,楼姝坪,徐云敏,朱祝军,何勇. 植物miR396及其靶基因进化、功能与应用研究进展. 核农学报. 2024(03): 472-480 . 百度学术
    2. 高明刚,李明,段高飞,王滕飞,冯晓健,许瑞瑞. 苹果GRF基因家族在非生物胁迫下的表达分析. 西北农业学报. 2024(01): 141-147 . 百度学术
    3. 孙龙飞,黄萍. 紫花苜蓿生长调节因子的全基因组鉴定及干旱胁迫下特征分析. 江苏农业科学. 2024(12): 45-52 . 百度学术
    4. 周文杰,张文瀚,贾玮,许自成,黄五星. 植物miRNA响应非生物胁迫研究进展. 植物学报. 2024(05): 810-833 . 百度学术
    5. 董家琦,吴淋慧,郑浩,张琼,钟彩虹. 高等植物性别分化的研究进展. 植物科学学报. 2024(05): 664-672 . 本站查看
    6. 赵思航,刘昊东,徐渴,张树华,赵勇,杨学举. 小麦中MIR160基因家族的生物信息学分析及靶基因鉴定. 分子植物育种. 2023(01): 27-35 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  363
  • HTML全文浏览量:  0
  • PDF下载量:  184
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-09-04
  • 修回日期:  2021-10-10
  • 网络出版日期:  2022-10-31
  • 发布日期:  2022-04-27

目录

    /

    返回文章
    返回