高级检索+

香樟全基因组WRKY基因家族的鉴定与分析

倪辉, 孙维红, 丁乐, 曾伟伟, 邹双全

倪辉, 孙维红, 丁乐, 曾伟伟, 邹双全. 香樟全基因组WRKY基因家族的鉴定与分析[J]. 植物科学学报, 2022, 40(4): 513-523. DOI: 10.11913/PSJ.2095-0837.2022.40513
引用本文: 倪辉, 孙维红, 丁乐, 曾伟伟, 邹双全. 香樟全基因组WRKY基因家族的鉴定与分析[J]. 植物科学学报, 2022, 40(4): 513-523. DOI: 10.11913/PSJ.2095-0837.2022.40513
Ni Hui, Sun Wei-Hong, Ding Le, Zeng Wei-Wei, Zou Shuang-Quan. Identification and analysis of the WRKY gene family in whole genome of Cinnamomum camphora(L.) Presl.[J]. Plant Science Journal, 2022, 40(4): 513-523. DOI: 10.11913/PSJ.2095-0837.2022.40513
Citation: Ni Hui, Sun Wei-Hong, Ding Le, Zeng Wei-Wei, Zou Shuang-Quan. Identification and analysis of the WRKY gene family in whole genome of Cinnamomum camphora(L.) Presl.[J]. Plant Science Journal, 2022, 40(4): 513-523. DOI: 10.11913/PSJ.2095-0837.2022.40513
倪辉, 孙维红, 丁乐, 曾伟伟, 邹双全. 香樟全基因组WRKY基因家族的鉴定与分析[J]. 植物科学学报, 2022, 40(4): 513-523. CSTR: 32231.14.PSJ.2095-0837.2022.40513
引用本文: 倪辉, 孙维红, 丁乐, 曾伟伟, 邹双全. 香樟全基因组WRKY基因家族的鉴定与分析[J]. 植物科学学报, 2022, 40(4): 513-523. CSTR: 32231.14.PSJ.2095-0837.2022.40513
Ni Hui, Sun Wei-Hong, Ding Le, Zeng Wei-Wei, Zou Shuang-Quan. Identification and analysis of the WRKY gene family in whole genome of Cinnamomum camphora(L.) Presl.[J]. Plant Science Journal, 2022, 40(4): 513-523. CSTR: 32231.14.PSJ.2095-0837.2022.40513
Citation: Ni Hui, Sun Wei-Hong, Ding Le, Zeng Wei-Wei, Zou Shuang-Quan. Identification and analysis of the WRKY gene family in whole genome of Cinnamomum camphora(L.) Presl.[J]. Plant Science Journal, 2022, 40(4): 513-523. CSTR: 32231.14.PSJ.2095-0837.2022.40513

香樟全基因组WRKY基因家族的鉴定与分析

基金项目: 

中央财政林业科技推广示范项目(闽[2020]TG07号)

福建省林业科技项目(2021FKJ19)。

详细信息
    作者简介:

    倪辉(1995-)男,硕士研究生,研究方向为药用植物栽培与利用(E-mail:1536195040@qq.com)。

    通讯作者:

    邹双全,E-mail:zou@fafu.edu.cn

  • 中图分类号: Q943.2

Identification and analysis of the WRKY gene family in whole genome of Cinnamomum camphora(L.) Presl.

Funds: 

This work was supported by grants from the Central Finance Forestry Science and Technology Promotion Demonstration Project (Min[2020]TG07) and Fujian Forestry Science and Technology Project (2021FKJ19).

undefined

  • 摘要: WRKY转录因子基因家族是植物特有的一类基因,在植物次生代谢、生物和非生物胁迫中起着重要的调节作用。本研究通过生物信息学方法,在香樟(Cinnamomum camphora (L.) Presl.)全基因组中鉴定了60个WRKY基因(CcWRKY),并将其分为Group Ⅰ~ Ⅲ,其中,Group Ⅰ和Ⅲ的成员发生了收缩现象;片段复制是CcWRKY基因扩张的主要驱动力;Group Ⅰ有完整的WRKY结构域和锌指基序,但Group Ⅱ、Ⅲ存在结构域和锌指基序的丢失和变异现象;CcWRKY基因的启动子区域具有激素类和胁迫类响应顺式作用元件;基因表达分析结果显示,在贫瘠环境(未施肥)中大多数CcWRKY基因在香樟各个组织中高表达,而环境适宜(施肥)条件下,基因表达量降低。
    Abstract: The WRKY transcription factor gene family is a class of plant-specific genes that play important regulatory roles in plant secondary metabolism and biotic and abiotic stresses. Through bioinformatic analysis, 60 WRKY genes were identified in the whole genome of Cinnamomum camphora (L.) Presl., which were divided into Groups Ⅰ,Ⅱ, and Ⅲ. Genes in Group Ⅰ and Group Ⅲ were contracted, while segment duplication was the main cause of CcWRKY gene expansion. The C terminus and N terminus of Group Ⅰ contained a complete WRKY domain and zinc finger motif, however there is loss and variation of the domain and zinc finger motif in members of Group Ⅱ and Group Ⅲ. There were many hormone- and stress-responsive cis-acting elements on the promoter of CcWRKYs, such as ABA, MeJA, SA, drought induction, and anaerobic-related stress response. Expression analysis showed that most CcWRKY genes were highly expressed in various tissues in barren environment (without fertilization), while under suitable environmental (fertilization) conditions, the level of gene expression decreased. This study analyzed the expression patterns of CcWRKY genes in response to abiotic stress and provided a theoretical basis for the subsequent functional verification of the C. camphora WRKY gene.
  • [1] 龙汉利, 梁国平, 辜云杰, 李晓清, 罗建勋. 四川香樟人工林生长特性研究[J]. 四川林业科技, 2011, 32(4): 1-4.

    Long HL, Liang GP, Gu YJ, Li XQ, Luo JX. Study of growing characteristics of Cinnamomum camphora plantations in Sichuan[J]. Journal of Sichuan Forestry Science and Technology, 2011, 32(4): 1-4.

    [2] 石皖阳, 何伟, 文光裕, 郭德选, 龙光远, 刘银苟. 樟精油成分和类型划分[J]. 植物学报, 1989, 31(3): 209-214.
    [3] 江燕, 章银柯, 应求是. 我国芳香植物资源、开发应用现状及其利用对策[J]. 中国林副特产, 2007(5): 64-67.

    Jiang Y, Zhang YK, Ying QS. The aroma plant resources, current development and utilization measures in China[J]. Forest By-Product and Speciality in China, 2007(5): 64-67.

    [4] 余盛. 不同施肥处理对香樟造林生长的影响[J]. 安徽农学通报, 2021, 27(16): 75-76.
    [5]

    Shen TF, Qi HR, Luan XY, Xu WL, Yu FX, et al. The chromosome-level genome sequence of the camphor tree provides insights into Lauraceae evolution and terpene biosynthesis[J]. Plant Biotechnol J, 2022, 20(2): 244-246.

    [6]

    Ulker B, Somssich IE. WRKY transcription factors: from DNA binding towards biological function[J].Curr Opin Plant Biol, 2004, 7(5): 491-498.

    [7]

    Eulgem T, Rushton PJ, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci, 2000, 5(5): 196-206.

    [8]

    Yamasaki K, Kigawa TK, Seki M, Shinozaki K, Yokoyama S. DNA-binding domains of plant-specific transcription factors: structure, function, and evolution[J]. Trends Plant Sci, 2013, 18(5): 267-276.

    [9]

    Eulgem T, Somssich IE. Networks of WRKY transcription factors in defense signaling[J]. Curr Opin Plant Biol, 2007, 4(10): 366-371.

    [10]

    Ross CA, Liu Y, Shen QJ. The WRKY gene family in rice (Oryza sativa)[J]. J Integr Plant Biol, 2007, 6(49): 827-842.

    [11]

    Gupta S, Mishra VK, Kumari S, Raavi, Chand R, et al. Deciphering genome-wide WRKY gene family of Triticum aestivum L. and their functional role in response to abiotic stress[J]. Genes genom, 2019, 41(1): 79-94.

    [12]

    Meng D, Li YY, Bai Y, Cheng LL. Genome-wide identification and characterization of WRKY transcriptional factor family in apple and analysis of their responses to waterlogging and drought stresss[J]. Plant Physiol Biochem, 2016(103): 71-83.

    [13]

    He HS, Dong Q, Shao YH, Jiang HY, Zhu SW, et al. Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa[J]. Plant Cell Rep, 2012, 31(7): 1199-1217.

    [14] 任媛, 赵玉洁, 张心慧, 招雪晴, 苑兆和. 石榴WRKY基因家族全基因组鉴定与表达分析[J]. 西北植物学报, 2020, 2(40): 218-231.

    Ren Y, Zhao YJ, Zhang XH, Zhao XQ, Yuan ZH. Genome-wide identification and expression analysis of WRKY gene family in Pome granate[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 2(40): 218-231.

    [15]

    Jiang YQ, Deyholos MK. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses[J]. Plant Mol Biol, 2009, 69(1-2): 91-105.

    [16]

    Lee HY, Cha JY, Choi CY, Choi NY, Ji HY, et al. Rice WRKY11 plays a role in pathogen defense and drought tolerance[J]. Rice, 2018, 11(1): 1-12.

    [17]

    Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, et al. Wheat WRKY genes[STXFX]TaWRKY2 and TaWRKY19[STXFZ]regulate abiotic stress tolerance in transgenic Arabidopsis plants[J]. Plant Cell Environ, 2012, 35(6): 1156-1170.

    [18]

    Holub EB. The arms race is ancient history in Arabidopsis, the wildflowers[J]. Nat Rev Genet, 2001, 2(7): 516-27.

    [19]

    Almeida DSMD, Amaral DOJD, Del-Bem LE, Santos EBD, Silva RJS, et al. Genome-wide identification and characterization of cacao WRKY transcription factors and analysis of their expression in response to witches' broom disease[J]. PLoS One, 2017, 12(10): e0187346.

    [20]

    Guo CL, Guo RG, Xu XZ, Gao M, Li XP, et al. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family[J]. J Exp Bot, 2014, 65(6): 1513-1528.

    [21]

    Wu ZJ, Li XH, Liu ZW, Li H, Wang YX, et al. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress[J]. Mol Genet Genomics, 2016, 291(1): 255-269.

    [22]

    Van V, Marcel C, Pappaioannou D, Neeleman L, Bol JF, Linthorst HJM. A novel WRKY transcription factor is required for induction of[STXFX] PR-1a [STXFZ]gene expression by salicylic acid and bacterial elicitors[J]. Plant Physiol, 2008, 146(4): 1983-1995.

    [23]

    Wang PJ, Yue C, Chen D, Zheng YC, Zhang Q, et al. Genome-wide identification of WRKY family genes and their response to abiotic stresses in tea plant (Camellia sinensis)[J]. Genes Genom, 2019, 41(1): 17-33.

    [24]

    Liu ZQ, Yan L, Wu Z, Mei C, Lu K, et al. Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA responsive genes[STXFX]ABI4 and ABI5[STXFZ] in Arabidopsis[J]. J Exp Bot, 2012, 63(2): 695-709.

    [25]

    Ali MA, Azeem F, Nawaz MA, Acet TB, Abbas AJ, et al. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis[J]. J Plant Phy-siol, 2018(226): 12-21.

    [26]

    Grunewald W, Karimi M, Wieczorek K, Cappelle EVD, Wischnitzki E, et al. A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes[J].Plant Physiol, 2008, 148(1): 358-368.

    [27]

    Feng YG, Cui R, Huang YP, Shi L, Wang SL, et al. Repression of transcription factor AtWRKY47 confers tole-rance to boron toxicity in Arabidopsis thaliana[J]. Ecotoxicol Environ Saf, 2021, 220(6): 112406.

  • 期刊类型引用(3)

    1. 王凯,陶兴梅,李小琴,谯祖勤,刘朝,张永福. 三叶木通叶片解剖结构和生理特征对酸雨胁迫的响应和钛的缓解效应. 热带亚热带植物学报. 2025(01): 15-24 . 百度学术
    2. 刘伶利,李学松,刘争,乐洪志,杨怀,琚煜熙,方若龙,张涛. 模拟酸雨对青钱柳幼苗的生理作用. 信阳师范学院学报(自然科学版). 2021(03): 452-456 . 百度学术
    3. 荣立苹,张佳奇,赵东辉,陈家硕,刘继生,周燕,高玉福. 模拟酸雨对元宝枫幼苗生理及叶绿素荧光参数的影响. 经济林研究. 2019(03): 44-51 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  359
  • HTML全文浏览量:  26
  • PDF下载量:  158
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-06-07
  • 修回日期:  2022-06-29
  • 网络出版日期:  2022-10-31
  • 发布日期:  2022-08-27

目录

    /

    返回文章
    返回