高级检索+

川滇高山栎QaGDU3基因的克隆及遗传转化

杨霖, 尹康权, 杜芳

杨霖, 尹康权, 杜芳. 川滇高山栎QaGDU3基因的克隆及遗传转化[J]. 植物科学学报, 2022, 40(4): 524-532. DOI: 10.11913/PSJ.2095-0837.2022.40524
引用本文: 杨霖, 尹康权, 杜芳. 川滇高山栎QaGDU3基因的克隆及遗传转化[J]. 植物科学学报, 2022, 40(4): 524-532. DOI: 10.11913/PSJ.2095-0837.2022.40524
Yang Lin, Yin Kang-Quan, Du Fang. Cloning of QaGDU3 gene from Quercus aquifolioides Rehd. et Wils. and its genetic transformation into Arabidopsis thaliana (L.) Heynh.[J]. Plant Science Journal, 2022, 40(4): 524-532. DOI: 10.11913/PSJ.2095-0837.2022.40524
Citation: Yang Lin, Yin Kang-Quan, Du Fang. Cloning of QaGDU3 gene from Quercus aquifolioides Rehd. et Wils. and its genetic transformation into Arabidopsis thaliana (L.) Heynh.[J]. Plant Science Journal, 2022, 40(4): 524-532. DOI: 10.11913/PSJ.2095-0837.2022.40524
杨霖, 尹康权, 杜芳. 川滇高山栎QaGDU3基因的克隆及遗传转化[J]. 植物科学学报, 2022, 40(4): 524-532. CSTR: 32231.14.PSJ.2095-0837.2022.40524
引用本文: 杨霖, 尹康权, 杜芳. 川滇高山栎QaGDU3基因的克隆及遗传转化[J]. 植物科学学报, 2022, 40(4): 524-532. CSTR: 32231.14.PSJ.2095-0837.2022.40524
Yang Lin, Yin Kang-Quan, Du Fang. Cloning of QaGDU3 gene from Quercus aquifolioides Rehd. et Wils. and its genetic transformation into Arabidopsis thaliana (L.) Heynh.[J]. Plant Science Journal, 2022, 40(4): 524-532. CSTR: 32231.14.PSJ.2095-0837.2022.40524
Citation: Yang Lin, Yin Kang-Quan, Du Fang. Cloning of QaGDU3 gene from Quercus aquifolioides Rehd. et Wils. and its genetic transformation into Arabidopsis thaliana (L.) Heynh.[J]. Plant Science Journal, 2022, 40(4): 524-532. CSTR: 32231.14.PSJ.2095-0837.2022.40524

川滇高山栎QaGDU3基因的克隆及遗传转化

基金项目: 

中央高校基本科研业务费专项(2021ZY80)

内蒙古自治区种业科技创新重大示范工程项目第一课题

国家自然科学基金(42071060,31700314)。

详细信息
    作者简介:

    杨霖(1996-),女,硕士研究生,研究方向为分子生态学(E-mail:yyyanglin777@bjfu.edu.cn)。

    通讯作者:

    尹康权,E-mail:yinkq@bjfu.edu.cn

    杜芳,E-mail:dufang325@bjfu.edu.cn

  • 中图分类号: Q943.2

Cloning of QaGDU3 gene from Quercus aquifolioides Rehd. et Wils. and its genetic transformation into Arabidopsis thaliana (L.) Heynh.

Funds: 

This work was supported by grants from the Fundamental Research Funds for the Central Universities (2021ZY80),Science and Technology Innovation and Major Demonstration for Seed Industry Project of Inner Mongolia Autonomous Region and National Natural Science Foundation of China (42071060,31700314).

undefined

undefined

  • 摘要: 以川滇高山栎(Quercus aquifolioides Rehd. et Wils.)叶片为材料,分别采用不依赖于连接反应的克隆法、农杆菌花序侵染、实时荧光定量PCR、图像分析等方法克隆了QaGDU3基因,获得QaGDU3转基因拟南芥(Arabidopsis thaliana(L.)Heynh.)并分析转基因植物的表型变化,利用生物信息学对QaGDU3蛋白与其他物种的GDU3蛋白序列间的差异和进化关系进行了分析。结果显示,GDU3是种子植物特有的基因;QaGDU3属于阴离子渗透酶ArsB/NhaD超家族成员,可能具有氨基酸转运功能。QaGDU3基因在拟南芥中过表达能够激活水杨酸(SA)途径中AtPR1、AtACD6、AtCBP60g和AtPAD4基因的表达,且转基因拟南芥莲座大小随着QaGDU3基因表达量升高而变小。研究结果说明GDU3是种子植物所特有的氨基酸转运蛋白并参与植物生长发育的调控。
    Abstract: We cloned the QaGDU3 gene from Quercus aquifolioides Rehd. et Wils. and obtained transgenic Arabidopsis thaliana (L.) Heynh. using ligation-independent cloning (LIC) and floral dipping transformation. We evaluated QaGDU3 expression and analyzed phenotypic changes in transgenic plants using quantitative real-time polymerase chain reaction (qRT-PCR) and image analysis, respectively. We investigated the structure, sequence divergence, and evolutionary relationship of QaGDU3 with related species. Structural analysis showed that QaGDU3 is an acidic and unstable hydrophilic transmembrane protein. Phylogenetic analysis indicated that GDU3 may only be present in seed plants. The qRT-PCR results showed that overexpression of the QaGDU3 gene in transgenic plants activated the expression of the AtPR1 (PATHOGENESIS-RELATED GENE 1), AtACD6 (ACCELERATED CELL DEATH 6), AtCBP60g (CAM-BINDING PROTEIN 60-LIKE g), and AtPAD4 (PHYTOALEXIN DEFICIENT 4) genes involved in the salicylic acid (SA) pathway. Furthermore, the rosette size of transgenic A. thaliana decreased with the increase in QaGDU3 expression. These data suggest that GDU3 may be a seed plant-specific amino acid transporter and that overexpression of QaGDU3 can affect plant growth and development.
  • [1]

    Denk T, Grimm GW, Manos PS, Deng M, Hipp AL. An updated infrageneric classification of the oaks: review of previous taxonomic schemes and synthesis of evolutionary patterns[M]//GilPelegrín E, Peguero-Pina JJ, Sancho-Knapik D, eds. Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.. Switzerland: Springer, 2018: 13-38.

    [2] 王国严, 徐阿生. 川滇高山栎研究综述[J]. 四川林业科技, 2008, 29(2): 23-29.

    Wang GY, Xu AS. A review of researches on Quercus aquifolioides[J]. Journal of Sichuan Forestry Science and Technology, 2008, 29(2): 23-29.

    [3]

    Meng HH, Su T, Gao XY, Li J, Jiang XL, et al. Warm-cold colonization: response of oaks to uplift of the Himalaya-Hengduan Mountains[J]. Mol Ecol, 2017, 26(12): 3276-3294.

    [4]

    Feng L, Zheng QJ, Qian ZQ, Yang J, Zhang YP, et al. Genetic structure and evolutionary history of three alpine sclerophyllous oaks in east himalaya-hengduan mountains and adjacent regions[J]. Front Plant Sci, 2016, 7: 1688.

    [5]

    Du FK, Hou M, Wang W, Mao K, Hampe A. Phylogeography of Quercus aquifolioides provides novel insights into the Neogene history of a major global hotspot of plant diversity in south-west China[J]. J Biogeogr, 2017, 44(2): 294-307.

    [6]

    Du FK, Wang T, Wang Y, Ueno S, Lafontaine G. Contrasted patterns of local adaptation to climate change across the range of an evergreen oak, Quercus aquifolioides[J]. Evol Appl, 2020, 13(9): 2377-2391.

    [7]

    Liu K, Qi M, Du FK. Population and landscape genetics provide insights into species conservation of two evergreen oaks in Qinghai-Tibet plateau and adjacent regions[J]. Front Plant Sci, 2022, 13: 858526.

    [8]

    Yang Z. PAML 4: phylogenetic analysis by maximum likelihood[J]. Mol Biol Evol, 2007, 24(8): 1586-1591.

    [9]

    Pilot G, Stransky H, Bushey DF, Pratelli R, Ludewig U, et al. Overexpression of [STXFX]GLUTAMINE DUMPER1[STXFZ] leads to hypersecretion of glutamine from hydathodes of Arabidopsis leaves[J]. Plant Cell, 2004, 16(7): 1827-1840.

    [10]

    Pratelli R, Pilot G. Altered amino acid metabolism in glutamine dumper1 plants[J]. Plant Signal Behav, 2007, 2(3): 182-184.

    [11]

    Chen H, Zhang Z, Teng K, Lai J, Zhang Y, et al. Up-regulation of LSB1/GDU3 affects geminivirus infection by activating the salicylic acid pathway[J]. Plant J, 2010, 6(21): 12-23.

    [12]

    He ZU, He D, Kohorn BD. Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response[J]. Plant J, 1998, 14(1): 55-63.

    [13]

    Dong X. The role of membrane-bound ankyrin-repeat protein ACD6 in programmed cell death and plant defense[J]. Sci STKE, 2004, 2004(221): e6.

    [14]

    Lu H, Rate DN, Song JT, Greenberg JT. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response[J]. Plant Cell, 2003, 15(10): 2408-2420.

    [15]

    Lu H, Liu Y, Greenberg JT. Structure-function analysis of the plasma membrane-localized Arabidopsis defense component ACD6[J]. Plant J, 2005, 44(5): 798-809.

    [16]

    Huang W, Wu Z, Tian H, Li X, Zhang Y. Arabidopsis CALMODULIN-BINDING PROTEIN 60b plays dual roles in plant immunity[J]. Plant Communications, 2021, 2(6): 100213.

    [17]

    Liu H, Li J, Xu Y, Hua J, Zou B. ISWI chromatin remodeling factors repress PAD4-mediated plant immune responses in Arabidopsis[J]. Biochem Bioph Res Co, 2021, 583: 63-70.

    [18]

    Zhang H, Liu Y. VIGS assays[J]. Bio-protocol, 2014, 4(5): e1057.

    [19]

    Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, et al. Protein identification and analysis tools in the ExPASy server[J]. Methods Mol Biol, 1999, 112: 531-552.

    [20]

    Moller S, Croning MD, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions[J]. Bioinformatics, 2001, 17(7): 646-653.

    [21]

    Nielsen H. Predicting secretory proteins with SignalP[J]. Methods Mol Biol, 2017, 1611: 59-73.

    [22]

    Bernhofer M, Dallago C, Karl T, Satagopam V, Hein-zinger M, et al. PredictProtein-predicting protein structure and function for 29 years[J]. Nucleic Acids Res, 2021, 49(W1): W535-W540.

    [23]

    Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, et al. Improved protein structure prediction using predicted interresidue orientations[J]. Proc Natl Acad Sci USA, 2020, 117(3): 1496-1503.

    [24]

    Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, et al. MyHits: improvements to an interactive resource for analyzing protein sequences[J]. Nucleic Acids Res, 2007, 35: W433-W437.

    [25]

    Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite[J]. Nucleic Acids Res, 2015, 43(W1): W39-W49.

    [26]

    Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, et al. Phytozome: a comparative platform for green plant genomics[J]. Nucleic Acids Res, 2012, 40: D1178-D1186.

    [27]

    Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7): 1870-1874.

    [28]

    Abràmoff MD, Magalhães PJ, Ram SJ. Image Processing with ImageJ[J]. Biophotonics Int, 2004, 11(7): 36-43.

    [29]

    De Vylder J, Vandenbussche F, Hu Y, Philips W, van der Straeten D. Rosette tracker: an open source image analysis tool for automatic quantification of genotype effects[J]. Plant Physiol, 2012, 160(3): 1149-1159.

    [30]

    Pratelli R, Pilot G. The plant-specific VIMAG domain of Glutamine Dumper1 is necessary for the function of the protein in Arabidopsis[J]. FEBS Lett, 2006, 580(30): 6961-6966.

    [31]

    Kuroda M, Dey S, Sanders OI, Rosen BP. Alternate energy coupling of ArsB, the membrane subunit of the Ars anion-translocating ATPase[J]. J Biol Chem, 1997, 272(1): 326-331.

    [32]

    Pratelli R, Voll LM, Horst RJ, Frommer WB, Pilot G. Stimulation of nonselective amino acid export by glutamine dumper proteins[J]. Plant Physiol, 2010, 152(2): 762-773.

计量
  • 文章访问数:  220
  • HTML全文浏览量:  3
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-05
  • 修回日期:  2022-03-01
  • 网络出版日期:  2022-10-31
  • 发布日期:  2022-08-27

目录

    /

    返回文章
    返回