Leaf structure and inorganic carbon acquisition strategies of heteroblastic aquatic plants at different stages of development
-
摘要: 以睡莲(Nymphaea tetragona Georgi)、萍蓬草(Nuphar pumila (Timm) de Candolle)、条叶萍蓬草(Nuphar sagittifolia Pursh)、眼子菜(Potamogeton distinctus A. Bennett)、南方眼子菜(Potamogeton octandrus Poir)和泽泻(Alisma plantago-aquatica L.)6种叶异形水生植物为材料,对它们的叶绿素含量、气孔性状、解剖结构和HCO3-利用等指标进行分析,比较了两种不同发育阶段叶片结构和无机碳获取策略的差异。结果显示,幼态叶比成熟叶的叶片更薄,具有更少的细胞层数,幼态叶上下表面均不具备气孔,而成熟叶上表皮有气孔。说明幼态叶在结构上增加细胞比表面积,增加水下吸收无机碳的能力,而成熟叶的结构能更好地吸收大气中的CO2。pH-drift分析结果证明,幼态叶具有更高获取水下无机碳的能力,以适应沉水环境。本研究还发现眼子菜和南方眼子菜的幼态叶可以利用水体中HCO3-为额外碳源,更有利于其在沉水环境中生长。研究结果阐明了叶异形水生植物不同发育阶段叶片结构和利用无机碳获取策略对水下和气生环境的适应性。Abstract: Six heteroblastic aquatic plants, i.e., Nymphaea tetragona Georgi, Nuphar pumila (Timm) de Candolle, Nuphar sagittifolia Pursh, Potamogeton distinctus A. Bennett, Potamogeton octandrus Poir, and Alisma plantago-aquatica L., were studied and their chlorophyll content, stomatal traits, anatomical structure, and HCO3- utilization were analyzed, the differences between leaf structure and inorganic carbon acquisition strategies at different developmental stages were compared.Results showed that the juvenile leaves were thinner and had fewer cell layers than the mature leaves. The upper and lower surfaces of the juvenile leaves did not contain stomata, whereas the upper epidermis of the mature leaves did contain stomata. Thus, the juvenile leaf structure showed increased cell surface area and the ability to absorb inorganic carbon underwater, while the mature leaves structure better absorbed CO2 from the atmosphere. Results from pH-drift analysis indicated that the juvenile leaves exhibited better acquisition of underwater inorganic carbon as an adaptation to the submerged environment. In addition, the juvenile leaves of P. distinctus and P. octandrus used HCO3- in the water as an additional carbon source, which was beneficial for growth in the submerged environment. These results elucidate the leaf structure of heteroblastic aquatic plants at different stages of development and the adaptability of inorganic carbon acquisition strategies to the submerged and aerial environments.
-
-
[1] [1] Philbrick CT, Les DH. Evolution of aquatic angiosperm reproductive systems: what is the balance between sexual and asexual reproduction in aquatic angiosperms?[J]. Bio Science, 1996, 46(11): 813-826.
[2] 王胜男. 三种生活型水生植物气孔适应性特征及相关基因表达调控机制[D]. 武汉: 武汉大学, 2019: 1-2. [2] 王胜男. 三种生活型水生植物气孔适应性特征及相关基因表达调控机制[D]. 武汉: 武汉大学, 2019: 1-2. [3] Cook CDK. Aquatic Plant Book[M]. Netherlands: SPB Academic Publishing, 1990: 228.
[3] Cook CDK. Aquatic Plant Book[M]. Netherlands: SPB Academic Publishing, 1990: 228.
[4] Arber A. On heterophylly in water plants[J]. Am Nat, 1919, 53(626): 272-278.
[4] Arber A. On heterophylly in water plants[J]. Am Nat, 1919, 53(626): 272-278.
[5] Huang WM, Han SJ, Xing ZF, Li W. Responses of leaf anatomy and CO2 concentrating mechanisms of the aqua-tic plant Ottelia cordata to variable CO2[J]. Front Plant Sci, 2020, 11(2020): 1261.
[5] Huang WM, Han SJ, Xing ZF, Li W. Responses of leaf anatomy and CO2 concentrating mechanisms of the aqua-tic plant Ottelia cordata to variable CO2[J]. Front Plant Sci, 2020, 11(2020): 1261.
[6] Huang LJ, Liu YC. Understanding diversity in leaf shape of Chinest sagittaria (Allsmataceae) by geometric tools[J]. Pak J Bot, 2014, 46(6): 1927-1934.
[6] Huang LJ, Liu YC. Understanding diversity in leaf shape of Chinest sagittaria (Allsmataceae) by geometric tools[J]. Pak J Bot, 2014, 46(6): 1927-1934.
[7] Zotz G, Wilhelm K, Becker A. Heteroblasty: a review[J]. Bot Rev, 2011, 77(2): 109-151.
[7] Zotz G, Wilhelm K, Becker A. Heteroblasty: a review[J]. Bot Rev, 2011, 77(2): 109-151.
[8] Pigliucci M. Phenotypic Plasticity: Beyond Nature and Nurture[M]. Baltimore: JHU Press, 2001: 1-29.
[8] Pigliucci M. Phenotypic Plasticity: Beyond Nature and Nurture[M]. Baltimore: JHU Press, 2001: 1-29.
[9] Marcus ASMGY. Alterations in Rubisco activity and in stomatal behavior induce a daily rhythm in photosynthesis of aerial leaves in the amphibiousplant Nuphar lutea[J]. Photosynth Res, 2006, 90(3): 233-242.
[9] Marcus ASMGY. Alterations in Rubisco activity and in stomatal behavior induce a daily rhythm in photosynthesis of aerial leaves in the amphibiousplant Nuphar lutea[J]. Photosynth Res, 2006, 90(3): 233-242.
[10] Maberly SC, Madsen TV. Affinity for CO2 in relation to the ability of freshwater macrophytes to use HCO3-[J]. Funct Ecol, 1998, 12(1): 99-106.
[10] Maberly SC, Madsen TV. Affinity for CO2 in relation to the ability of freshwater macrophytes to use HCO3-[J]. Funct Ecol, 1998, 12(1): 99-106.
[11] Maberly SC, Gontero B. Ecological imperatives for aquatic CO2-concentrating mechanisms[J]. J Exp Bot, 2017, 68(14): 3797-3814.
[11] Maberly SC, Gontero B. Ecological imperatives for aquatic CO2-concentrating mechanisms[J]. J Exp Bot, 2017, 68(14): 3797-3814.
[12] Jackson MB. Ethylene and responses of plants to soil waterlogging and submergence[J]. Plant Physiol, 1985, 36(1): 145-174.
[12] Jackson MB. Ethylene and responses of plants to soil waterlogging and submergence[J]. Plant Physiol, 1985, 36(1): 145-174.
[13] Browse JA, Dromgoolea AFI, Browna JMA. Photosynthesis in the aquatic macrophyte Egeria densa.Ⅲ . Gas exchange studies[J]. Funct Plant Biol, 1979, 6(4): 499-512.
[13] Browse JA, Dromgoolea AFI, Browna JMA. Photosynthesis in the aquatic macrophyte Egeria densa. Ⅲ. Gas exchange studies[J]. Funct Plant Biol, 1979, 6(4): 499-512.
[14] Black MA, Maberly SC, Spence DHN. Resistances to carbon dioxide fixation in four submerged freshwater macrophytes[J]. New Phytol, 1981, 89(4): 557-568.
[14] Black MA, Maberly SC, Spence DHN. Resistances to carbon dioxide fixation in four submerged freshwater macrophytes[J]. New Phytol, 1981, 89(4): 557-568.
[15] Madsen TV, Maberly SC. Diurnal variation in light and carbon limitation of photosynthesis by two species of submerged freshwater macrophyte with a differential ability to use bicarbonate[J]. Freshw Biol, 1991, 26(2): 175-187.
[15] Madsen TV, Maberly SC. Diurnal variation in light and carbon limitation of photosynthesis by two species of submerged freshwater macrophyte with a differential ability to use bicarbonate[J]. Freshw Biol, 1991, 26(2): 175-187.
[16] Sand-Jensen K, Frost-Christensen H. Plant growth and photosynthesis in the transition zone between land and stream[J]. Aquat Bot, 1999, 63(1): 23-35.
[16] Sand-Jensen K, Frost-Christensen H. Plant growth and photosynthesis in the transition zone between land and stream[J]. Aquat Bot, 1999, 63(1): 23-35.
[17] Maberly SC, Gontero B. Trade-offs and synergies in the structural and functional characteristics of leaves photosynthesizing in aquatic environments[M]//Adams WW III, Terashima I, eds. The Leaf: A Platform for Performing Photosynthesis. Chambridge: Springer Cham, 2018: 307-343.
[17] Maberly SC, Gontero B. Trade-offs and synergies in the structural and functional characteristics of leaves photosynthesizing in aquatic environments[M]//Adams WW III, Terashima I, eds. The Leaf: A Platform for Performing Photosynthesis. Chambridge: Springer Cham, 2018: 307-343.
[18] Iida S, Ikeda M, Amano M, Sakayama H, Kadono Y, et al. Loss of heterophylly in aquatic plants: not ABA-mediated stress but exogenous ABA treatment induces stomatal leaves in Potamogeton perfoliatus[J]. J Plant Res, 2016, 129(5): 853-862.
[18] Iida S, Ikeda M, Amano M, Sakayama H, Kadono Y, et al. Loss of heterophylly in aquatic plants: not ABA-mediated stress but exogenous ABA treatment induces stomatal leaves in Potamogeton perfoliatus[J]. J Plant Res, 2016, 129(5): 853-862.
[19] Sculthorpe CD. Biology of Aquatic Vascular Plants[M]. London:Edward Arnold, 1967: 92-149.
[19] Sculthorpe CD. Biology of Aquatic Vascular Plants[M]. London:Edward Arnold, 1967: 92-149.
[20] Maberly SC, Spence DHN. Photosynthesis and photorespiration in freshwater organisms: amphibious plants[J]. Aquat Bot, 1989, 34(1-3): 267-286.
[20] Maberly SC, Spence DHN. Photosynthesis and photorespiration in freshwater organisms: amphibious plants[J]. Aquat Bot, 1989, 34(1-3): 267-286.
[21] Mommer L, Pons TL, Wolters-Arts M, Venema JH, Visser EJW. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance[J]. Plant Physiol, 2005, 139(1): 497-508.
[21] Mommer L, Pons TL, Wolters-Arts M, Venema JH, Visser EJW. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance[J]. Plant Physiol, 2005, 139(1): 497-508.
[22] Robe WE, Griffiths H. Adaptations for an amphibious life: changes in leaf morphology, growth rate, carbon and nitrogen investment, and reproduction during adjustment to emersion by the freshwater macrophyte Littorella uniflora[J]. New Phytol, 1998, 140(1): 9-23.
[22] Robe WE, Griffiths H. Adaptations for an amphibious life: changes in leaf morphology, growth rate, carbon and nitrogen investment, and reproduction during adjustment to emersion by the freshwater macrophyte Littorella uniflora[J]. New Phytol, 1998, 140(1): 9-23.
[23] Wang SN, Li PP, Liao ZY, Wang WW, Chen T,et al. Adaptation of inorganic carbon utilization strategies in submerged and floating leaves of heteroblastic plant Ottelia cordata[J]. Environ Exp Bot, 2022, 196(2022): 104818.
[23] Wang SN, Li PP, Liao ZY, Wang WW, Chen T,et al. Adaptation of inorganic carbon utilization strategies in submerged and floating leaves of heteroblastic plant Ottelia cordata[J]. Environ Exp Bot, 2022, 196(2022): 104818.
[24] Iversen LL, Winkel A, Baastrup-Spohr L, Hinke AB, Alahuhta J, et al. Catchment properties and the photosynthetic trait composition of freshwater plant communities[J]. Science, 2019, 366(6467): 878-881.
[24] Iversen LL, Winkel A, Baastrup-Spohr L, Hinke AB, Alahuhta J, et al. Catchment properties and the photosynthetic trait composition of freshwater plant communities[J]. Science, 2019, 366(6467): 878-881.
[25] Zhang Y, Yin L, Jiang HS, Li W, Gontero B, et al. Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae)[J]. Photosyn Res, 2014, 121(2):285-297.
[25] Zhang Y, Yin L, Jiang HS, Li W, Gontero B, et al. Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae)[J]. Photosyn Res, 2014, 121(2):285-297.
[26] Huang WM, Shao H, Zhou SN, Zhou Q, Fu WL,et al. Different CO2 acclimation strategies in juvenile and mature leaves of Ottelia alismoides[J]. Photosyn Res, 2018, 138(2):219-232.
[26] Huang WM, Shao H, Zhou SN, Zhou Q, Fu WL,et al. Different CO2 acclimation strategies in juvenile and mature leaves of Ottelia alismoides[J]. Photosyn Res, 2018, 138(2):219-232.
[27] Hussner A, Mettler-Altmann T, Weber APM, Sand-Jensen K. Acclimation of photosynthesis to supersaturated CO2 in aquatic plant bicarbonate users[J]. Freshw Biol, 2016, 61(10): 1720-1732.
[27] Hussner A, Mettler-Altmann T, Weber APM, Sand-Jensen K. Acclimation of photosynthesis to supersaturated CO2 in aquatic plant bicarbonate users[J]. Freshw Biol, 2016, 61(10): 1720-1732.
[28] Casati PV, Lara MS, Andreo C. Induction of a C4-like mechanism of CO2 fixation in Egeria densa, a submersed aquatic species[J]. Plant Physiol, 2000, 123(4):1611-1622.
[28] Casati PV, Lara MS, Andreo C. Induction of a C4-like mechanism of CO2 fixation in Egeria densa, a submersed aquatic species[J]. Plant Physiol, 2000, 123(4):1611-1622.
[29] Wells CL, Pigliucci M. Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants[J]. Perspect Plant Ecol Evol Syst, 2000, 3(1): 1-18.
[29] Wells CL, Pigliucci M. Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants[J]. Perspect Plant Ecol Evol Syst, 2000, 3(1): 1-18.
[30] Horiguchi G, Nemoto K, Yokoyama T, Hirotsu N. Photosynthetic acclimation of terrestrial and submerged leaves in the amphibious plant Hygrophila difformis[J]. AoB Plants, 2019, 11(2): plz009.
[30] Horiguchi G, Nemoto K, Yokoyama T, Hirotsu N. Photosynthetic acclimation of terrestrial and submerged leaves in the amphibious plant Hygrophila difformis[J]. AoB Plants, 2019, 11(2): plz009.
[31] Minorsky PV. The Hot and the Classic[J]. Plant Physiol, 2002, 128(4): 1167-1168.
[31] Minorsky PV. The Hot and the Classic[J]. Plant Physiol, 2002, 128(4): 1167-1168.
[32] Koga H, Kojima M, Takebayashi Y, Sakakibara H, Tsukaya H. Identification of the unique molecular framework of heterophylly in the amphibious plant Callitriche pa-lustris L.[J]. Plant Cell, 2021, 33(10): 3272-3292.
[32] Koga H, Kojima M, Takebayashi Y, Sakakibara H, Tsukaya H. Identification of the unique molecular framework of heterophylly in the amphibious plant Callitriche pa-lustris L.[J]. Plant Cell, 2021, 33(10): 3272-3292.
[33] Kim J, Joo Y, Kyung J, Jeon M, Park JY, et al. A mole-cular basis behind heterophylly in an amphibious plant, Ranunculus trichophyllus[J]. PLoS Genet, 2018, 14(2): e1007208.
[33] Kim J, Joo Y, Kyung J, Jeon M, Park JY, et al. A mole-cular basis behind heterophylly in an amphibious plant, Ranunculus trichophyllus[J]. PLoS Genet, 2018, 14(2): e1007208.
[34] Wellburn AR, Lichtenthaler H. Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Adv Photo Res, 1984,Ⅱ : 9-12.
[34] Wellburn AR, Lichtenthaler H. Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Adv Photo Res, 1984, Ⅱ: 9-12.
[35] James SA, Bell DT. Leaf morphological and anatomical characteristics of heteroblastic Eucalyptus globulus ssp. globulus (Myrtaceae)[J]. Aust J Bot, 2001, 49(2): 259-269.
[35] James SA, Bell DT. Leaf morphological and anatomical characteristics of heteroblastic Eucalyptus globulus ssp. globulus (Myrtaceae)[J]. Aust J Bot, 2001, 49(2): 259-269.
[36] Maberly SC, Spence DHN. Photosynthetic inorganic carbon use by freshwater plants[J]. J Ecol, 1983(71): 705-724.
[36] Maberly SC, Spence DHN. Photosynthetic inorganic carbon use by freshwater plants[J]. J Ecol, 1983(71): 705-724.
[37] Shao H, Gontero B, Maberly SC, Jiang HS, Cao Y, et al. Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO2 and light[J]. J Exp Bot, 2017, 68(14): 3985-3995.
[37] Shao H, Gontero B, Maberly SC, Jiang HS, Cao Y, et al. Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO2 and light[J]. J Exp Bot, 2017, 68(14): 3985-3995.
[38] Montero F. Photosynthetic pigments[M]//Muriel G, William MI, Ricardo A, Henderson JCII, Daniele P, eds. Encyclopedia of Astrobiology. 2nd. Berlin:Springer,2015:1883-1884.
[38] Montero F. Photosynthetic pigments[M]//Muriel G, William MI, Ricardo A, Henderson JCII, Daniele P, eds. Encyclopedia of Astrobiology. 2nd. Berlin:Springer,2015:1883-1884.
[39] Li X, He D, Guo Y. Morphological structure and physiological research of heterophylly in Potamogeton octandrus[J]. Plant Sys Evol, 2019, 305(3): 223-232.
[39] Li X, He D, Guo Y. Morphological structure and physiological research of heterophylly in Potamogeton octandrus[J]. Plant Sys Evol, 2019, 305(3): 223-232.
[40] Klimenko EN. Structural and functional aspects of the Nuphar lutea (L.) Smith heterophylly: ultrastructure and photosynthesis[J]. Cytol Genet, 2012, 46(5): 272-279.
[40] Klimenko EN. Structural and functional aspects of the Nuphar lutea (L.) Smith heterophylly: ultrastructure and photosynthesis[J]. Cytol Genet, 2012, 46(5): 272-279.
[41] Ueno O. Structural characterization of photosynthetic cells in an amphibious sedge, Eleocharis vivipara, in relation to C3 and C4 metabolism[J]. Planta, 1996, 199(3): 382-393.
[41] Ueno O. Structural characterization of photosynthetic cells in an amphibious sedge, Eleocharis vivipara, in relation to C3 and C4 metabolism[J]. Planta, 1996, 199(3): 382-393.
[42] Li G, Hu S, Hou H, Kimura S. Heterophylly: phenotypic plasticity of leaf shape in aquatic and amphibious plants[J]. Plants, 2019, 8(10): 420-420.
[42] Li G, Hu S, Hou H, Kimura S. Heterophylly: phenotypic plasticity of leaf shape in aquatic and amphibious plants[J]. Plants, 2019, 8(10): 420-420.
[43] 董如磊, 喻方圆, 欧阳献. 遮荫对东京野茉莉幼苗叶片形态和解剖结构的影响[J]. 江西农业大学学报, 2010, 32(5): 974-981. Dong RL, Yu FY, Ouyang X. Effects of shading treatments on leaf morphology and anatomical structure of styrax tonkinensis seedlings[J]. Acta Agriculturae Universitatis Jiangxiensis, 2010, 32(5): 974-981.
[43] 董如磊, 喻方圆, 欧阳献. 遮荫对东京野茉莉幼苗叶片形态和解剖结构的影响[J]. 江西农业大学学报, 2010, 32(5): 974-981. Dong RL, Yu FY, Ouyang X. Effects of shading treatments on leaf morphology and anatomical structure of styrax tonkinensis seedlings[J]. Acta Agriculturae Universitatis Jiangxiensis, 2010, 32(5): 974-981.
[44] Kordyum E, Mosyakin S, Ivanenko G, Ovcharenko Y, Brykov V. Hydropotes of young and mature leaves in Nuphar lutea and Nymphaea alba (Nymphaeaceae): formation, functions and phylogeny[J]. Aquat Bot, 2021, 169(2021): 103342-103342.
[45] Colmer TD, Winkel A, Pedersen O. A perspective on underwater photosynthesis in submerged terrestrial wetland plants[J]. AoB Plants, 2011:plr030.
[46] Farquhar GD, von Caemmerer S, Berry JA. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1): 78-90.
[47] Gross LJ, Kirschbaum MUF, Pearcy RW. A dynamic model of photosynthesis in varying light taking account of stomatal conductance, C3-cycle intermediates, photorespiration and Rubisco activation[J]. Plant Cell Environ, 1991, 14(9): 881-893.
[48] Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis[J] Annu Rev Plant physiol, 1982, 33(1):317-345.
[49] Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6951): 901-908.
[50] 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. Yang KT, Chang HL, Cheng GP, Yu XY, Xian JR. Stomatal traits of main greening plant species in Lanzhou[J]. Chinese Journal of Plant Ecology, 2021, 45(2): 187-196.
[51] Doležal J, Kučerová A, Jandová V, Klimeš A,Říha P, et al. Anatomical adaptations in aquatic and wetland dicot plants: disentangling the environmental, morphological and evolutionary signals[J]. Environ Exp Bot, 2021, 187(2021): 104495.
[52] Allen ED, Spence DHN. The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters[J]. New Phytol, 1981, 87(2):269-283.
[53] Li PP, Liao ZY, Zhou JZ, Yin LY, Jiang HS, et al. Bicarbonate-use by aquatic macrophytes allows a reduction in photorespiration at low CO2 concentrations[J]. Environ Exp Bot, 2021, 188(2021): 104520-104520.
[54] Newman JR, Raven JA. Photosynthetic carbon assimilation by Crassula helmsii[J]. Oecologia, 1995, 101(4): 494-499. angiosperm reproductive systems: what is the balance between sexual and asexual reproduction in aquatic angiosperms?[J]. Bio Science, 1996, 46(11): 813-826.
-
期刊类型引用(1)
1. 杨智,杨永. 重要林木樟科植物全基因组测序研究进展. 植物学报. 2024(02): 302-318 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 334
- HTML全文浏览量: 26
- PDF下载量: 113
- 被引次数: 7