Effects of silver nanoparticles on dormant bud germination, seedling survival, and growth of Spirodela polyrhiza (L.) Schleid
-
摘要: 纳米银(AgNPs)是一种潜在的新型环境污染物,本研究以紫萍(Spirodela polyrhiza (L.) Schleid)休眠芽为实验材料,研究AgNPs对休眠芽萌发率、存活率及叶状体数目、面积和叶绿素含量等指标的影响,并对各项指标的半数效应浓度(EC50)进行比较。结果显示,AgNPs可以抑制紫萍休眠芽的萌发,高浓度(10 mg/L)时可造成休眠芽死亡率显著增加。紫萍休眠芽萌发后叶状体数目和叶状体面积、色素含量均随浓度增加逐渐降低,表现出剂量效应,且叶绿素a对AgNPs最敏感。研究结果表明AgNPs对水生植物紫萍无性繁殖体的萌发和生长都具有抑制作用,具有一定的生态风险。Abstract: Silver nanoparticles (AgNPs) are an emerging environmental pollutant. In this study, dormant buds of Spirodela polyrhiza were chosen to investigate the effects of AgNPs on germination, survival, and growth of propagules. Results showes that AgNPs inhibited the germination of dormant buds and high concentrations (10 mg/L) even caused death. The number and area of fronds and content of photosynthetic pigments decreased gradually with the increase in concentration after germination of dormant buds and chlorophyll a was the most sensitive parameter to AgNP toxicity. This study showed that AgNPs, as a novel pollutant, have inhibitory effects on the germination and growth of asexual propagules of aquatic plants, and thus exhibit certain ecological risks.
-
Keywords:
- Silver nanoparticles /
- Aquatic plants /
- Dormant buds /
- Germination
-
-
[1] 刘盼, 宋超, 朱华, 张清靖, 贾成霞. 3种水生植物对富营养化水体的净化作用研究[J]. 水生态学杂志, 2011, 32(2): 69-73. Liu P, Song C, Zhu H, Zhang QJ, Jia CX. Studies on eutrophicated water quality improvement by three kinds of hydrophytes[J]. Journal of Hydroecology, 2011, 32(2): 69-73.
[2] 杨海龙, 洪瑞川. 石菖蒲对污水适应性的研究[J]. 南昌大学学报, 1994(1): 97-102. Yang HL, Hong RC. Study on the adaptability of Acorus gramineus in water[J]. Journal of Nanchang University, 1994(1): 97-102.
[3] 李英杰, 许秋瑾, 金相灿, 胡社荣, 胡少贞. 湖泊水生植被恢复物种选择及群落配置分析[J]. 环境工程学报, 2004, 5(8): 23-26. Li YJ, Xu QJ, Jin XC, Hu SR, Hu SZ. Analyses on species selection and community collocation of macrophyte in lake restoration[J]. Chinese Journal of Environmental Engineering, 2004, 5(8): 23-26.
[4] 厉恩华, 杨超, 蔡晓斌, 王智, 王学雷. 洪湖湿地植物多样性与保护对策[J]. 长江流域资源与环境, 2021, 30(3): 623-635. Li EH, Yang C, Cai XB, Wang Z, Wang XL. Plant diversity and protection measures in Honghu wetland[J]. Resources and Environment in the Yangtze Basin, 2021, 30(3): 623-635.
[5] 吴英, 李曼丽, 杨彪. 洱海水生植被生态修复措施的探讨[J]. 绿色科技, 2020(24): 193-196. Wu Y, Li ML, Yang B. Study on ecological restoration of aquatic vegetation in Erhai Lake[J]. Journal of Green Science and Technology, 2020(24): 193-196.
[6] 严拾伟, 潘珉, 李杨, 李林, 肖邦定, 等. 滇池大泊口水域水生植物种子库时空特征与恢复潜力[J]. 湖泊科学, 2021, 33(2): 529-538. Yan SW, Pan M, Li Y, Li L, Xiao BD, et al. Spatiotemporal characteristics and restoration potentiality of seed banks of aquatic plants in Dabokou wetland in Lake Dianchi, southwest China[J]. Journal of Lake Sciences, 2021, 33(2): 529-538.
[7] 袁龙义, 李守淳, 李伟. 水深变化对刺苦草冬芽形成的影响研究[J]. 江西师范大学学报(自然科学版), 2013, 37(4): 355-358. Yuan LY, Li SC, Li W. The effects of water level fluctuation on the winter bud formation of submerged macrophyte Vallisneria spinulosa[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2013, 37(4): 355-358.
[8] 谢冬, 于丹. 本地种与外来种水生植物在不同基质营养下的生长比较[J]. 生态科学, 2008, 27(5): 335-340. Xie D, Yu D. A comparison of exotic and native aquatic plants in their growth responses across experimental nutrient gradients[J]. Ecological Science, 2008, 27(5): 335-340.
[9] 黄俊, 衣俊, 程金平. 长江口及近海水环境中新型污染物研究进展[J]. 环境化学, 2014, 33(9): 1484-1493. Huang J, Yi J, Cheng JP. Emerging contaminants in the Yangtze estuary and adjacent coastal area, China[J]. Environmental Chemistry, 2014, 33(9): 1484-1493.
[10] Li A, Tang Q, Kearney KE, Nagy KL, Zhang J, et al. Persistent and toxic chemical pollutants in fish consumed by Asians in Chicago, United States[J]. Sci Total Environ, 2022, 811(2022): 152214.
[11] Liu Z, Huang Q, Wang H, Zhang SY. An enhanced risk assessment framework for microplastics occurring in the Westerscheldt estuary[J]. Sci Total Environ, 2022, 817(2022): 153006.
[12] Juarez MA. Impact of nanomaterials on plants: what other implications do they have?[J]. Biocell, 2022, 46(3): 651-654.
[13] 周东美. 纳米Ag粒子在我国主要类型土壤中的迁移转化过程与环境效应[J]. 环境化学, 2015, 34(4): 605-613. Zhou DM. Transport and transformation of nano Ag particle in soils and its environmental effects[J]. Environmental Chemistry, 2015, 34(4): 605-613.
[14] Handy RD, Cornelis G, Fernandes T, Tsyusko O, Decho A, et al. Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench[J]. Environ Toxicol Chem, 2012, 31(1): 15-31.
[15] Yin L, Cheng Y, Colman BP, Auffan M, Wiesner M, Bernhardt ES. More than the ions: the effects of silver nanoparticles on Lolium multiflorum[J]. Environ Sci Technol, 2011, 45(6): 2360-2367.
[16] Fateme M, Hossein A, Sara H. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria[J]. Ecotoxicol Environ Saf, 2013, 88(2013): 48-54.
[17] Dimkpa CO, Mclean JE, Martineau N, Britt DW, Haverkamp R, et al. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix[J]. Environ Sci Technol, 2013, 47(2): 1082-1090.
[18] Jiang HS, Li M, Chang FY, Li W, Yin LY. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza[J]. Environ Toxicol Chem, 2012, 31(8): 1880-1886.
[19] 陈斌, 张传玲, 江红生, 尹黎燕. 纳米银诱导拟南芥活性氧自由基的积累和抗氧化系统的改变[J]. 基因组学与应用生物学, 2017, 36(4): 1646-1653. Chen B, Zhang CL, Jiang HS, Yin LY. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems[J]. Genomics and Applied Biology, 2017, 36(4): 1646-1653.
[20] Mazumdar H. Phytotoxicity effect of silver nanoparticles on Oryza sativa[J]. Int J Chemtech Res, 2011, 3(3): 1494-1500.
[21] Ghosh M, Manivannan J, Sinha S, Chakraborty A, Mallick SK, Bandyopadhyay M, et al. In vitro and in vivo genotoxicity of silver nanoparticles[J]. Mutant Res-Gen Tox En, 2012, 749(1-2): 60-69.
[22] Jiang HS, Qiu XN, Li GB, Li W, Yin LY. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza[J]. Environ Toxicol Chem, 2014, 33(6): 1398-405.
[23] 李伟. 富营养化湖泊水生植物群落恢复重建的理论与方法[J]. 水生态学杂志, 2008, 28(5): 529-538. Li W. Theory and methodology of aquatic plant community restoration in Eutrophicated Lakes[J]. Journal of Hydroecology, 2008, 28(5): 529-538.
[24] 杜俊杰. 不同纳米材料对小麦种子萌发的影响[J]. 安徽农业科学, 2018, 46(13): 38-40. Du JJ. Effects of different kinds of nanomaterials on seed germination of wheat[J]. Journal of Anhui Agricultural Sciences, 2018, 46(13): 38-40.
[25] Thuesombat P, Hannongbua S, Akasit S, Chadchawan S. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth[J]. Ecotoxicol Environ Saf, 2014, 104(2014): 302-309.
[26] Almutairi ZM. Expression profiling of certain MADS-box genes in Arabidopsis thaliana plant treated with silver nanoparticles[J]. Czech J Genet Plant, 2017, 53(1): 30-36.
[27] Qian H, Peng X, Xiao H, Ren J, Sun L, Fu Z. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana[J]. J Environ Sci, 2013, 25(9): 1947-1956.
[28] 王荣. 纳米银对黑麦草生长特性的影响[J]. 农业环境科学学报, 2015, 34(4): 639-645. Wang R. Effects of nano-silver on growth characteristics of perennial ryegrass[J]. Journal of Agro-Environment Science, 2015, 34(4): 639-645.
[29] Souza LRR, Corrêa TZ, Bruni AT, da Veiga, Márcia AMS. The effects of solubility of silver nanoparticles, accumulation, and toxicity to the aquatic plant Lemna minor. [J]. Environ Sci Pollut Res Int, 2021, 28(13): 16720-16733.
[30] Lalau CM, Simioni C, Vicentini DS, Ouriques LC, Matias WG. Toxicological effects of AgNPs on duckweed (Landoltia punctata)[J]. Sci Total Environ, 2020, 710(2020): 136318.
[31] Abbas Q, Liu G, Yousaf B, Ali MU, Ullah H, Ahmed R. Effects of biochar on uptake, acquisition and translocation of silver nanoparticles in rice (Oryza sativa L.) in relation to growth, photosynthetic traits and nutrients displacement[J]. Environ Pollut, 2019, 250(2019): 728-736.
[32] 苑志华, 汤晓琳, 白炎青, 唐婷, 于昌平. 纳米银对小球藻光合作用和呼吸作用的影响[J]. 中国环境科学, 2013, 33(8): 1468-1473. Yuan ZH, Tang XL, Bai YQ, Tang T, Yu CP. Effects of silver nanoparticles on photosynthesis and respiration of Chlorella vulgaris[J]. China Environmental Science, 2013, 33(8): 1468-1473.
[33] Falco WF, Scherer MD, Oliveira SL, Wender H, Colbeck I, Caires A. Phytotoxicity of silver nanoparticles on Vicia faba: evaluation of particle size effects on photosynthetic performance and leaf gas exchange[J]. Sci Total Environ, 2020, 701(2020): 134816.
-
期刊类型引用(1)
1. 杨智,杨永. 重要林木樟科植物全基因组测序研究进展. 植物学报. 2024(02): 302-318 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 225
- HTML全文浏览量: 2
- PDF下载量: 112
- 被引次数: 7