高级检索+

基于文献计量学的冻土植被研究进展

潘智鹏, 严雪, 刘帆, 鲜玲

潘智鹏, 严雪, 刘帆, 鲜玲. 基于文献计量学的冻土植被研究进展[J]. 植物科学学报, 2022, 40(6): 751-761. DOI: 10.11913/PSJ.2095-0837.2022.60751
引用本文: 潘智鹏, 严雪, 刘帆, 鲜玲. 基于文献计量学的冻土植被研究进展[J]. 植物科学学报, 2022, 40(6): 751-761. DOI: 10.11913/PSJ.2095-0837.2022.60751
Pan Zhi-Peng, Yan Xue, Liu Fan, Xian Ling. Progress in permafrost vegetation research based on bibliometrics[J]. Plant Science Journal, 2022, 40(6): 751-761. DOI: 10.11913/PSJ.2095-0837.2022.60751
Citation: Pan Zhi-Peng, Yan Xue, Liu Fan, Xian Ling. Progress in permafrost vegetation research based on bibliometrics[J]. Plant Science Journal, 2022, 40(6): 751-761. DOI: 10.11913/PSJ.2095-0837.2022.60751
潘智鹏, 严雪, 刘帆, 鲜玲. 基于文献计量学的冻土植被研究进展[J]. 植物科学学报, 2022, 40(6): 751-761. CSTR: 32231.14.PSJ.2095-0837.2022.60751
引用本文: 潘智鹏, 严雪, 刘帆, 鲜玲. 基于文献计量学的冻土植被研究进展[J]. 植物科学学报, 2022, 40(6): 751-761. CSTR: 32231.14.PSJ.2095-0837.2022.60751
Pan Zhi-Peng, Yan Xue, Liu Fan, Xian Ling. Progress in permafrost vegetation research based on bibliometrics[J]. Plant Science Journal, 2022, 40(6): 751-761. CSTR: 32231.14.PSJ.2095-0837.2022.60751
Citation: Pan Zhi-Peng, Yan Xue, Liu Fan, Xian Ling. Progress in permafrost vegetation research based on bibliometrics[J]. Plant Science Journal, 2022, 40(6): 751-761. CSTR: 32231.14.PSJ.2095-0837.2022.60751

基于文献计量学的冻土植被研究进展

基金项目: 

西藏大学高层次引进人才项目((2020)1号-20)

第二次青藏高原综合科学考察研究项目(2019QZKK0502)。

详细信息
    作者简介:

    潘智鹏(1995-),男,硕士,研究方向为青藏高原冻土植物生态学(E-mail: 601095152@com)。

    通讯作者:

    刘帆,E-mail: fanliu@com

  • 中图分类号: Q948.2

Progress in permafrost vegetation research based on bibliometrics

Funds: 

This work was supported by grants from the High-level Introduction of Talents Project of Tibet University ((2020)1-20) and Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (2019QZKK0502).

undefined

  • 摘要: 本研究利用文献计量学方法统计分析了1985-2021年由Web of Science核心数据库收录的全球2867篇(其中青藏高原157篇)冻土植被研究的相关文献。结果显示,研究论文数量逐年增加,青藏高原文献数量年增长率(19.94%)高于全球研究文献(13.76%)。遥感技术、模型算法等研究技术也被大量应用。拥有冻土的国家贡献了57.55%的独立研究,同时国际合作文献数量逐年递增。全球冻土植被研究的重点在于估算冻土融化导致的碳排放以及冻土地区植物在固碳中的作用,而青藏高原的研究重点独立于全球热点,主要集中在冻土地区植被和生态系统的退化。预测在未来冻土植被研究中,全球研究主要关注碳循环,而青藏高原的研究则关注退化过程。青藏高原独树一帜的研究方向可为全球冻土植被研究带来独特的视角,青藏高原地区也必将成为全球冻土植被最重要的研究区域之一。
    Abstract: In the current study, we used bibliometric methods to count permafrost vegetation studies at the global (2867) and Qinghai-Tibet Plateau scales (157) from the Web of Science core database from 1985 to 2021. Permafrost vegetation research has grown year by year, with increasing use of remote sensing technology and model algorithms. Those countries with permafrost showed the highest contribution to the literature. The number of cooperative studies among countries has increased year by year, higher than the number of independent studies. In general, global permafrost vegetation studies have focused on carbon emission estimations under permafrost melting and carbon sequestration by plants, while studies on the Qinghai-Tibet Plateau have focused on the degradation of vegetation and ecosystems in permafrost regions. Given the high diversity of ecosystems on the Qinghai-Tibet Plateau, it is more vulnerable to degradation caused by permafrost melting. Future studies will likely continue to explore the carbon cycle at a larger scale, as well as the degradation process on the Qinghai-Tibet Plateau. The unique research direction on the Qinghai-Tibet Plateau should bring a different perspective to global permafrost vegetation research, with the region becoming one of the most important study areas for permafrost vegetation.
  • [1]

    Gruber S. Derivation and analysis of a high-resolution estimate of global permafrost zonation[J]. Cryosphere, 2012, 6(1):221-233.

    [2]

    Camill P. Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming[J]. Clim Change, 2005, 68(1-2):135-152.

    [3]

    Cheng GD, Wu TH. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. J Geophys Res Earth Surf, 2007, 112(F2):F02S03.

    [4]

    Zhao L, Ping CL, Yang DQ, Cheng GD, Ding YJ, Liu SY. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China[J]. Glob Planet Change, 2004, 43(1-2):19-31.

    [5]

    Niu FJ, Lin ZJ, Liu H, Lu JH. Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau[J]. Geomorphology, 2011, 132(3-4):222-233.

    [6]

    Chen H, Zhu QA, Peng CH, Wu N, Wang Y, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau[J]. Glob Chang Biol, 2013, 19(10):2940-2955.

    [7]

    Wang GX, Li YS, Wu QB, Wang YB. Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau[J]. Sci China Ser D Earth Sci, 2006, 49(11):1156-1169.

    [8]

    Jones BM, Grosse G, Arp CD, Jones MC, Anthony KMW, Romanovsky VE. Modern thermokarst lake dyna-mics in the continuous permafrost zone, northern Seward Peninsula, Alaska[J]. J Geophys Res Biogeosci, 2011, 116(G2):G00M03.

    [9]

    Kanevskiy M, Shur Y, Fortier D, Jorgenson MT, Stephani E. Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure[J]. Quat Res, 2011, 75(3):584-596.

    [10]

    Jorgenson MT, Racine CH, Walters JC, Osterkamp TE. Permafrost degradation and ecological changes associa-ted with a warming climate in central Alaska[J]. Clim Change, 2001, 48(4):551-579.

    [11]

    Lin ZJ, Niu FJ, Xu ZY, Xu J, Wang P. Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Permafr Periglac Process, 2010, 21(4):315-324.

    [12]

    Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR. Increased plant growth in the northern high latitudes from 1981 to 1991[J]. Nature, 1997, 386(6626):698-702.

    [13]

    Nan ZT, Li SX, Cheng GD. Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years[J]. Sci China Ser D Earth Sci, 2005, 48(6):797-804.

    [14]

    Aria M, Misuraca M, Spano M. Mapping the evolution of social research and data science on 30 years of Social Indicators Research[J]. Soc Indic Res, 2020, 149(3):803-831.

    [15]

    Hubert LJ, Levin JR. Inference models for categorical clustering[J]. Psychol Bull, 1977, 84(5):878-887.

    [16]

    Van Leeuwen T. The application of bibliometric analyses in the evaluation of social science research. Who benefits from it, and why it is still feasible[J]. Scientometrics, 2006, 66(1):133-154.

    [17]

    Bellardo T.An investigation of online searcher traits and their relationship to search outcome[J]. J Am Soc Inf Sci, 1985, 36(4):241-250.

    [18]

    Pritchard A. Statistical bibliography or bibliometrics?[J]. J Doc, 1969, 25(4):348-349.

    [19]

    Diodato VP, Gellatly P. Dictionary of Bibliometrics[M]. London:Routledge, 2013:10-25.

    [20]

    McBurney MK, Novak PL. What is bibliometrics and why should you care?[C]//Proceedings IEEE International Professional Communication Conference. Portland:IEEE, 2002:108-114.

    [21]

    Curl EA, Lartey R, Peterson CM. Interactions between root pathogens and soil microarthropods[J]. Agric Ecosyst Environ, 1988, 24(1-3):249-261.

    [22]

    White HD, McCain KW. Visualizing a discipline:an author co-citation analysis of information science, 1972-1995[J]. J Am Soc Inf Sci, 1998, 49(4):327-355.

    [23]

    Noyons ECM, Moed HF, van Raan AFJ. Integrating research performance analysis and science mapping[J]. Scientometrics, 1999, 46(3):591-604.

    [24]

    Börner K, Chen CM, Boyack KW. Visualizing knowledge domains[J]. Annu Rev Inf Sci Technol, 2003, 37(1):179-255.

    [25]

    Liu H, Peng K, Li W, Cao Y. Investigation on the trends and characteristics of articles on submerged macrophytes:perception from bibliometrics between 1991 and 2018[J]. J Freshwater Eco, 2019, 34(1):703-713.

    [26]

    Goh KH, See KF. Twenty years of water utility benchmar-king:a bibliometric analysis of emerging interest in water research and collaboration[J]. J Clean Prod, 2021, 284:124611.

    [27]

    Zhang YL, Yao XL, Qin BQ. A critical review of the deve-lopment, current hotspots, and future directions of Lake Taihu research from the bibliometrics perspective[J]. Environ Sci Pollut Res, 2016, 23(13):12811-12821.

    [28]

    Aria M, Cuccurullo C. Bibliometrix:an R-tool for comprehensive science mapping analysis[J]. J Informetr, 2017, 11(4):959-975.

    [29] 王绍令,米海珍.青藏公路铺筑沥青路面后路基下多年冻土的变化[J]. 冰川冻土, 1993, 15(4):566-573.

    Wang SL, Mi HZ. The change of permafrost under roadbed with asphalt pavement along the Qinghai-Tibet highway[J]. Journal of Glaciology and Geocryology, 1993, 15(4):566-573.

    [30]

    Vonk JE, Tank SE, Bowden WB, Laurion I, Vincent WF, et al. Reviews and syntheses:effects of permafrost thaw on Arctic aquatic ecosystems[J]. Biogeosciences, 2015, 12(23):7129-7167.

    [31]

    Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps[J]. Biogeosciences, 2014, 11(23):6573-6593.

    [32]

    Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, et al. Vulnerability of permafrost carbon to climate change:implications for the global carbon cycle[J]. Bioscience, 2008, 58(8):701-714.

    [33]

    Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochem Cycles, 2009, 23(2):GB2023.

    [34]

    Canadell JG, Pataki DE, Gifford R, Houghton RA, Luo YQ, et al. Saturation of the terrestrial carbon sink[M]//Canadell JG, Pataki DE, Pitelka LF, eds. Terrestrial Ecosystems in A Changing World. Berlin:Springer, 2007:59-78.

    [35]

    Abbott BW, Jones JB. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra[J]. Glob Chang Biol, 2015, 21(12):4570-4587.

    [36]

    Anthony KW, von Deimling TS, Nitze I, Frolking S, Emond A, et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes[J]. Nat Commun, 2018, 9(1):3262.

    [37]

    Foley JA, DeFries R, Asner GP, Barford C, Bonan G, et al. Global consequences of land use[J]. Science, 2005, 309(5734):570-574.

    [38]

    Tape K, Sturm M, Racine C. The evidence for shrub expansion in northern Alaska and the Pan-Arctic[J]. Glob Chang Biol, 2006, 12(4):686-702.

    [39]

    Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, et al. Shrub expansion in tundra ecosystems:dynamics, impacts and research priorities[J]. Environ Res Lett, 2011, 6(4):45509.

    [40]

    Romanovsky VE, Smith SL, Christiansen HH. Permafrost thermal state in the polar northern hemisphere during the international polar year 2007-2009:a synthesis[J]. Permafr Periglac Process, 2010, 21(2):106-116.

    [41]

    Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB, et al. Evidence and implications of recent climate change in northern Alaska and other arctic regions[J]. Clim Change, 2005, 72(3):251-298.

    [42] 崔巍,吴青柏,刘永智.热融湖塘对多年冻土的热影响[J]. 冰川冻土, 2010, 32(4):755-760.

    Cui W, Wu QB, Liu YZ. The thermal effect of a thermokarst lake on permafrost[J]. Journal of Glaciology and Geocryology, 2010, 32(4):755-760.

    [43] 吴吉春,盛煜,吴青柏,温智. 青藏高原多年冻土退化过程及方式[J]. 中国科学:地球科学, 2009, 39(11):1570-1578.

    Wu JC, Sheng Y, Wu QB, Wen Z. Processes, and modes of permafrost degradation on the Qinghai-Tibet Plateau[J]. Sci China Sers D:Earth Sciences, 2009, 39(11):1570-1578.

    [44]

    Wu QB, Shi B, Liu YZ. Interaction study of permafrost and highway along Qinghai-Xizang highway[J]. Sci China Ser D:Earth Sci, 2003, 46(2):97-105.

    [45]

    Yang MX, Nelson FE, Shiklomanov NI, Guo DL, Wan GN. Permafrost degradation and its environmental effects on the Tibetan Plateau:a review of recent research[J]. Earth-Sci Rev, 2010, 103(1-2):31-44.

    [46] 郑度,林振耀,张雪芹. 青藏高原与全球环境变化研究进展[J]. 地学前缘,2002, 9(1):95-102.

    Zheng D, Lin ZY, Zhang XQ. Progress in studies of Tibe-tan Plateau and global environmental change[J]. Earth Science Frontiers, 2002, 9(1):95-102.

    [47]

    Haxeltine A, Prentice IC. BIOME3:an equilibrium terrest-rial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types[J]. Global Biogeochem Cycles, 1996, 10(4):693-709.

    [48] 程国栋, 王绍令. 试论中国高海拔多年冻土带的划分[J]. 冰川冻土, 1982(2):4-20.

    Cheng GD, Wang SL. On the zonation of high-altitude permafrost in China[J]. Journal of Glaciology and Geocryology, 1982(2):4-20.

    [49]

    Li SX, Nan ZT, Zhao L. Impact of soil freezing and thawing process on thermal exchange between atmosphere and ground surface[J]. J Glaciol Geocryol, 2002, 24(5):506-511.

    [50]

    Nelson FE, Outcalt SI. A computational method for prediction and regionalization of permafrost[J]. Arct Alp Res, 1987, 19(3):279-288.

    [51] 吴青柏, 沈永平, 施斌. 青藏高原冻土及水热过程与寒区生态环境的关系[J]. 冰川冻土, 2003, 25(3):250-255.

    Wu QB, Shen YP, Shi B. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2003, 25(3):250-255.

计量
  • 文章访问数:  120
  • HTML全文浏览量:  1
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-10
  • 修回日期:  2022-07-27
  • 网络出版日期:  2023-01-12

目录

    /

    返回文章
    返回