高级检索+

野慈姑和矮慈姑种间花粉传递与生殖干扰不对称性

唐莎莎, 费采虹, 杨聪, 尚书禾, 熊浩镧, 王欣怡, 汪小凡

唐莎莎, 费采虹, 杨聪, 尚书禾, 熊浩镧, 王欣怡, 汪小凡. 野慈姑和矮慈姑种间花粉传递与生殖干扰不对称性[J]. 植物科学学报, 2022, 40(6): 762-770. DOI: 10.11913/PSJ.2095-0837.2022.60762
引用本文: 唐莎莎, 费采虹, 杨聪, 尚书禾, 熊浩镧, 王欣怡, 汪小凡. 野慈姑和矮慈姑种间花粉传递与生殖干扰不对称性[J]. 植物科学学报, 2022, 40(6): 762-770. DOI: 10.11913/PSJ.2095-0837.2022.60762
Tang Sha-Sha, Fei Cai-Hong, Yang Cong, Shang Shu-He, Xiong Hao-Lan, Wang Xin-Yi, Wang Xiao-Fan. Interspecific pollen transfer and asymmetry in reproductive interference between Sagittaria trifolia L. and Sagittaria pygmaea L.[J]. Plant Science Journal, 2022, 40(6): 762-770. DOI: 10.11913/PSJ.2095-0837.2022.60762
Citation: Tang Sha-Sha, Fei Cai-Hong, Yang Cong, Shang Shu-He, Xiong Hao-Lan, Wang Xin-Yi, Wang Xiao-Fan. Interspecific pollen transfer and asymmetry in reproductive interference between Sagittaria trifolia L. and Sagittaria pygmaea L.[J]. Plant Science Journal, 2022, 40(6): 762-770. DOI: 10.11913/PSJ.2095-0837.2022.60762
唐莎莎, 费采虹, 杨聪, 尚书禾, 熊浩镧, 王欣怡, 汪小凡. 野慈姑和矮慈姑种间花粉传递与生殖干扰不对称性[J]. 植物科学学报, 2022, 40(6): 762-770. CSTR: 32231.14.PSJ.2095-0837.2022.60762
引用本文: 唐莎莎, 费采虹, 杨聪, 尚书禾, 熊浩镧, 王欣怡, 汪小凡. 野慈姑和矮慈姑种间花粉传递与生殖干扰不对称性[J]. 植物科学学报, 2022, 40(6): 762-770. CSTR: 32231.14.PSJ.2095-0837.2022.60762
Tang Sha-Sha, Fei Cai-Hong, Yang Cong, Shang Shu-He, Xiong Hao-Lan, Wang Xin-Yi, Wang Xiao-Fan. Interspecific pollen transfer and asymmetry in reproductive interference between Sagittaria trifolia L. and Sagittaria pygmaea L.[J]. Plant Science Journal, 2022, 40(6): 762-770. CSTR: 32231.14.PSJ.2095-0837.2022.60762
Citation: Tang Sha-Sha, Fei Cai-Hong, Yang Cong, Shang Shu-He, Xiong Hao-Lan, Wang Xin-Yi, Wang Xiao-Fan. Interspecific pollen transfer and asymmetry in reproductive interference between Sagittaria trifolia L. and Sagittaria pygmaea L.[J]. Plant Science Journal, 2022, 40(6): 762-770. CSTR: 32231.14.PSJ.2095-0837.2022.60762

野慈姑和矮慈姑种间花粉传递与生殖干扰不对称性

基金项目: 

国家自然科学基金(31970250)。

详细信息
    作者简介:

    唐莎莎(1997-),女,硕士研究生,研究方向为植物交配系统与进化生态学(E-mail: 2019202040003@edu.cn)。

    通讯作者:

    汪小凡,E-mail: wangxf@edu.cn

  • 中图分类号: Q944.43

Interspecific pollen transfer and asymmetry in reproductive interference between Sagittaria trifolia L. and Sagittaria pygmaea L.

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31970250).

  • 摘要: 本研究观测了两种慈姑属(Sagittaria)植物野慈姑(S. trifolia L.)和矮慈姑(S. pygmaea L.)共享传粉者的种间访花活动,利用染色示踪方法检测了种间花粉传递是否存在及其强度,通过统计二者在单生/混生样地中的结实情况判断物种间生殖干扰存在与否,以及对植株有性生殖成功率的影响。结果显示:(1)主要共享传粉者存在种间访花行为,但访花者种间运动频率显著低于种内运动,且对野慈姑雄花存在访花偏好。(2)在混生样地中野慈姑和矮慈姑的雌蕊群上均能检测到共享传粉者带来的种间花粉传递,约1.4%的柱头上落置了染色标记的异种花粉;野慈姑花粉散布于矮慈姑花上的距离较远,数量较多,而矮慈姑花粉主要表现为近距离传递。(3)两物种在自然生境中共存时,矮慈姑种子不完整胚比例显著增加,而野慈姑完整胚比例维持在80%以上,表现为种间生殖干扰的不对称性。此外,本研究还对减轻生殖干扰的生态机制进行了探讨。
    Abstract: Closely-related sympatric species are often at risk of interspecific reproductive interference due to similar reproductive biological characteristics. Fruits can be formed in hand-pollination hybridization experiments of Sagittaria trifolia L. and S.pygmaea L., but the arrival of interspecific pollen tubes to the ovule is delayed due to different growth routes. Here, we investigated sympatrically growingS. trifolia and S. pygmaea populations with overlapping flowering periods and observed the interspecific movement patterns of shared pollinators, using pollen tracers to detect the existence and intensity of interspecific pollen transfer. The existence of reproductive interference and its effect on sexual reproductive fitness were measured using seed set in single-/mixed-plots of the two species. Results showed that: (1) The main shared pollinators visited flowers of both species, but the frequency of interspecific movements was significantly lower than that of intraspecific movements, and pollinators showed a preference for male flowers of S. trifolia. (2) Interspecific pollen transfer by shared pollinators was detected in both species under natural conditions, and the proportion of stigma with alien pollen was only about 1.4%. The pollen ofS. trifolia was carried further and in greater quantity to S. pygmaea flowers, while the pollen of S. pygmaea was mainly transferred in short distances. (3) When the two species coexisted in natural habitats, the proportion of undeveloped S. pygmaea seeds increased significantly, while the proportion of developed S. trifolia seeds remained above 80%, indicating asymmetry in interspecific reproductive interference. In this study, we explored the ecological mechanisms that mitigate reproductive interference, providing a new perspective for understanding the coexistence and reproductive strategies of related plant species in the wild.
  • [1]

    Gröning J, Hochkirch A. Reproductive interference between animal species[J]. Q Rev Biol, 2008, 83(3):257-282.

    [2]

    Katsuhara KR, Ushimaru A. Prior selfing can mitigate the negative effects of mutual reproductive interference between coexisting congeners[J]. Funct Ecol, 2019, 33(8):1504-1513.

    [3]

    Cothran RD. The importance of reproductive interference in ecology and evolution:from organisms to communities[J]. Popul Ecol, 2015, 57(2):339-341.

    [4]

    Whitton J, Sears CJ, Maddison WP. Co-occurrence of related asexual, but not sexual, lineages suggests that reproductive interference limits coexistence[J]. Proc Biol Sci, 2017, 284(1868):20171579.

    [5]

    Burdfield-Steel ER, Shuker DM. Reproductive interference[J]. Curr Biol, 2011, 21(12):R450-R451.

    [6]

    Huang SQ, Shi XQ. Floral isolation in Pedicularis:how do congeners with shared pollinators minimize reproductive interference?[J]. New Phytol, 2013, 199(3):858-865.

    [7]

    Kishi S, Nishida T, Tsubaki Y. Reproductive interference determines persistence and exclusion in species interactions[J]. J Anim Ecol, 2009, 78(5):1043-1049.

    [8]

    Nishida S, Takakura KI, Naiki A, Nishida T. Habitat partitioning in native Geranium species through reproductive interference[J]. Ann Bot, 2020, 125(4):651-661.

    [9]

    Nishida T, Takakura K, Iwao K. Host specialization by reproductive interference between closely related herbivorous insects[J]. Popul Ecol, 2015, 57(2):273-281.

    [10]

    Lopes SA, Bergamo PJ, Queiroz SNP, Ollerton J, Santos T, Rech AR. Heterospecific pollen deposition is positively associated with reproductive success in a diverse hummingbird-pollinated plant community[J]. Oikos, 2022, 2022:e08714.

    [11]

    Campbell DR. Pollen and gene dispersal:the influences of competition for pollination[J]. Evolution, 1985, 39(2):418-431.

    [12]

    Mitchell RJ, Flanagan RJ, Brown BJ, Waser NM, Karron JD. New frontiers in competition for pollination[J]. Ann Bot, 2009, 103(9):1403-1413.

    [13]

    Ye ZM, Dai WK, Jin XF, Gituru R, Wang QF, Yang CF. Competition and facilitation among plants for pollination:can pollinator abundance shift the plant-plant interactions?[J]. Plant Ecol, 2014, 215(1):3-13.

    [14]

    Moreira-Hernandez JI, Muchhala N. Importance of pollinator-mediated interspecific pollen transfer for angiosperm evolution[J]. Annu Rev Ecol Evol Syst, 2019, 50:191-217.

    [15]

    Kyogoku D. Reproductive interference:ecological and evolutionary consequences of interspecific promiscuity[J]. Popul Ecol, 2015, 57(2):253-260.

    [16]

    Nishida S, Kanaoka MM, Hashimoto K, Takakura KI, Nishida T. Pollen-pistil interactions in reproductive interfe-rence:comparisons of heterospecific pollen tube growth from alien species between two native Taraxacum species[J]. Funct Ecol, 2014, 28(2):450-457.

    [17]

    Takemori A, Naiki A, Takakura KI, Kanaoka MM, Nishida S. Comparison of mechanisms of reproductive interference in Taraxacum[J]. Ann Bot, 2019, 123(6):1017-1027.

    [18]

    Harder LD, Cruzan MB, Thomson JD. Unilateral incompatibility and the effects of interspecific pollination for Erythronium americanum and Erythronium albidum (Li-liaceae)[J]. Can J Bot, 1993, 71(2):353-358.

    [19]

    Runquist RDB. Pollinator-mediated competition between two congeners, Limnanthes douglasii subsp. rosea and L. alba (Limnanthaceae)[J]. Am J Bot, 2012, 99(7):1125-1132.

    [20]

    Arceo-Gómez G, Ashman TL. Heterospecific pollen deposition:does diversity alter the consequences?[J]. New Phytol, 2011, 192(3):738-746.

    [21]

    Briggs HM, Anderson LM, Atalla LM, Delva AM, Dobbs EK, Brosi BJ. Heterospecific pollen deposition in Delphi-nium barbeyi:linking stigmatic pollen loads to reproductive output in the field[J]. Ann Bot, 2016, 117(2):341-347.

    [22]

    Wei N, Kaczorowski RL, Arceo-Gómez G, O'Neill EM, Hayes RA, Ashman TL. Pollinators contribute to the maintenance of flowering plant diversity[J]. Nature, 2021, 597(7878):688-692.

    [23] 吕娜. 慈姑属植物的种间杂交及同种花粉优势[D]. 武汉:武汉大学, 2015:24-27.
    [24]

    Huang LJ, Wang XW, Wang XF. The structure and deve-lopment of incompletely closed carpels in an apocarpous species, Sagittaria trifolia (Alismataceae)[J]. Am J Bot, 2014, 101(7):1229-1234.

    [25]

    Lyu N, Du W, Wang XF. Unique growth paths of he-terospecific pollen tubes result in late entry into ovules in the gynoecium of Sagittaria (Alismataceae)[J]. Plant Biol, 2017, 19(2):108-114.

    [26]

    Arceo-Gómez G, Raguso RA, Geber MA. Can plants evolve tolerance mechanisms to heterospecific pollen effects? An experimental test of the adaptive potential in Clarkia species[J]. Oikos, 2016, 125(5):718-725.

    [27]

    Fang Q, Huang SQ. A directed network analysis of he-terospecific pollen transfer in a biodiverse community[J]. Ecology, 2013, 94(5):1176-1185.

    [28]

    Johnson AL, Ashman TL. Consequences of invasion for pollen transfer and pollination revealed in a tropical island ecosystem[J]. New Phytol, 2019, 221(1):142-154.

    [29]

    Tur C, Sáez A, Traveset A, Aizen MA. Evaluating the effects of pollinator-mediated interactions using pollen transfer networks:evidence of widespread facilitation in south Andean plant communities[J]. Ecol Lett, 2016, 19(5):576-586.

    [30]

    Ashman TL, Arceo-Gómez G. Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities[J]. Am J Bot, 2013, 100(6):1061-1070.

    [31]

    Kay KM, Zepeda AM, Raguso RA. Experimental sympatry reveals geographic variation in floral isolation by hawkmoths[J]. Ann Bot, 2019, 123(2):405-413.

    [32]

    Albrecht M, Kleijn D, Williams NM, Tschumi M, Blaauw BR, et al. The effectiveness of flower strips and hedge-rows on pest control, pollination services and crop yield:a quantitative synthesis[J]. Ecol Lett, 2020, 23(10):1488-1498.

    [33] 王啸闻. 密度和水位变化对小慈姑和野慈姑居群的性别分化及表型可塑性的影响[D]. 武汉:武汉大学, 2015:52-80.
计量
  • 文章访问数:  137
  • HTML全文浏览量:  2
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-15
  • 修回日期:  2022-08-19
  • 网络出版日期:  2023-01-12

目录

    /

    返回文章
    返回