高级检索+

探索用差热分析技术测定麻栎叶片的自由水含量

张萍, 韩彪, 丁平, 朱建军

张萍,韩彪,丁平,朱建军. 探索用差热分析技术测定麻栎叶片的自由水含量[J]. 植物科学学报,2023,41(5):687−693. DOI: 10.11913/PSJ.2095-0837.23009
引用本文: 张萍,韩彪,丁平,朱建军. 探索用差热分析技术测定麻栎叶片的自由水含量[J]. 植物科学学报,2023,41(5):687−693. DOI: 10.11913/PSJ.2095-0837.23009
Zhang P,Han B,Ding P,Zhu JJ. An approach to quantify the free water content in leaves of Quercus acutissima Carruth. with differential thermal analysis[J]. Plant Science Journal,2023,41(5):687−693. DOI: 10.11913/PSJ.2095-0837.23009
Citation: Zhang P,Han B,Ding P,Zhu JJ. An approach to quantify the free water content in leaves of Quercus acutissima Carruth. with differential thermal analysis[J]. Plant Science Journal,2023,41(5):687−693. DOI: 10.11913/PSJ.2095-0837.23009
张萍,韩彪,丁平,朱建军. 探索用差热分析技术测定麻栎叶片的自由水含量[J]. 植物科学学报,2023,41(5):687−693. CSTR: 32231.14.PSJ.2095-0837.23009
引用本文: 张萍,韩彪,丁平,朱建军. 探索用差热分析技术测定麻栎叶片的自由水含量[J]. 植物科学学报,2023,41(5):687−693. CSTR: 32231.14.PSJ.2095-0837.23009
Zhang P,Han B,Ding P,Zhu JJ. An approach to quantify the free water content in leaves of Quercus acutissima Carruth. with differential thermal analysis[J]. Plant Science Journal,2023,41(5):687−693. CSTR: 32231.14.PSJ.2095-0837.23009
Citation: Zhang P,Han B,Ding P,Zhu JJ. An approach to quantify the free water content in leaves of Quercus acutissima Carruth. with differential thermal analysis[J]. Plant Science Journal,2023,41(5):687−693. CSTR: 32231.14.PSJ.2095-0837.23009

探索用差热分析技术测定麻栎叶片的自由水含量

基金项目: 国家自然科学基金项目(31870376);山东省农业良种工程项目(2019LZGC01805)。
详细信息
    作者简介:

    张萍(1963−),女,教授,研究方向为植物生理生态(E−mail:ping.zh@163.com

    通讯作者:

    朱建军: E-mail:jzjzhu@ldu.edu.cn

  • 中图分类号: Q945

An approach to quantify the free water content in leaves of Quercus acutissima Carruth. with differential thermal analysis

Funds: This work was supported by grants from the National Natural Science Foundation of China (31870376) and Provincial Engineering Project of Shandong for Elite Agricultural Varieties (2019LZGC01805).
  • 摘要:

    探索了用差热扫描曲线分析麻栎(Quercus acutissima Carruth.)在不同状态下的自由水含量的方法。结果显示,在降温过程中以时间为主轴的时域差热扫描曲线能够清楚地显示叶片降温过程中样品的结冰温度、放热峰高度和峰下积分面积与组织含水量的关系,而以温度为主轴的温域差热扫描曲线具有更大的峰下积分面积,在测定样品中的自由水含量时有更高的灵敏度。结冰麻栎叶片在升温过程中的温域差热分析曲线显示,组织内自由水与束缚水的分界点为(−8.23 ± 0.21)MPa,接近2 mol/kg NaCl溶液的渗透势(−8.71 MPa)。死亡麻栎叶片的结冰放热峰显示出均一溶液的结冰特征,即快速结冰升温和快速降温形成尖锐的峰形和高峰值(活叶片峰高的1.91倍),而活叶片的的结冰放热过程则有明显的受细胞膜系统阻碍和迟滞的特征,出现较低的峰值和缓慢的散热峰。研究结果表明,差热分析不仅能够获得植物组织的结冰−融冰过程的自由水相变参数,也能够定量分析植物组织的自由水含量。

    Abstract:

    An approach was devised to quantify free water content in the leaves of sawtooth oak (Quercus acutissima Carruth.) under different states using differential thermal analysis. The freezing temperatures, peak heights of the exotherms and the areas under the exotherms were clearly observed in the time-domain scanning curve of the differential thermal analysis during cooling, while the larger areas under the exotherms were seen in the temperature-domain scanning curve of the differential thermal analysis, providing a higher sensitivity in quantifying the free water content in the samples. The boundary between free and bound water in the tissues was (−8.23 ± 0.21) MPa, close to the osmotic potential of a 2 mol/kg NaCl solution (−8.71 MPa). Freeze-killed leaves demonstrated uniform solution freezing features with sharp, narrow peaks and higher peak values (1.91 times that of living leaves) attributed to rapid temperature changes. In living leaves, the peaks were broader, and values were lower, suggesting notable delays in water phase change within cellular membranes. Thus, differential thermal analysis could effectively determine the phase change parameters of free water in plant tissues during freeze-thaw cycles and quantify the free water content in plant tissues.

  • 图  1   麻栎活叶片在降温过程中以时间为主轴的时域差热分析放热曲线(A)及以温度为主轴的温域差热分析放热曲线(B)

    Figure  1.   Differential thermal analysis of time domain exotherm (A) and temperature domain exotherm (B) of living leaves of Quercus acutissima during cooling

    图  2   结冰麻栎叶片在升温过程中以时间为主轴的时域差热分析放热曲线(A)及以温度为主轴的温域差热分析放热曲线(B)

    Figure  2.   Differential thermal analysis of time domain exotherm (A) and temperature domain exotherm (B) of frozen leaves of Quercus acutissima during rewarming

    图  3   麻栎死亡叶片在降温过程中以温度为主轴的温域差热分析放热曲线

    Figure  3.   Differential thermal analysis of temperature domain exotherm of killed leaves of Quercus acutissima during cooling

    表  1   麻栎叶片经历不同变温过程的差热分析

    Table  1   Results of differential thermal analysis of Quercus acutissima leaves

    样品/变温过程
    Sample / Temperature change
    活叶片/冷却
    Living leaves / cooling
    结冰叶片/升温
    Frozen leaves / warming
    死亡叶片/冷却
    Dead leaves / cooling
    结(融)冰温度 / ℃−8.86 ± 0.28−9.17 ± 0.11−9.25 ± 0.19
    过冷度 / ℃7.58 ± 0.267.97 ± 0.18
    放(吸)热峰值 / ℃
    2.89 ± 0.07−2.97 ± 0.145.54 ± 0.23
    自由水分界温度 / ℃−6.19 ± 0.16
    峰下面积 时域
    (9.64 ± 0.71)%(9.89 ± 0.47)%(4.07 ± 0.47)%
    温域(15.61 ± 0.84)%(19.85 ± 0.63)%(7.73 ± 0.55)%
    自由水/峰下面积比时域(5.92 ± 0.07)%(5.77% ± 0.05)%(14.02 ± 0.11)%
    温域(3.66 ± 0.05)%(2.87 ± 0.03)%(7.83 ± 0.03)%
    下载: 导出CSV
  • [1]

    Londo JP,Kovaleski AP. Characterization of wild north American grapevine cold hardiness using differential thermal analysis[J]. Am J Enol Vitic,2017,68 (2):203−212. doi: 10.5344/ajev.2016.16090

    [2]

    Smykatz-Kloss W. Differential Thermal Analysis: Application and Results in Mineralogy[M]. Berlin: Springer, 1974: 15-44.

    [3]

    Vold MJ. Differential thermal analysis[J]. Anal Chem,1949,21 (6):683−688. doi: 10.1021/ac60030a011

    [4]

    Palta JP,Whitaker BD,Weiss LS. Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of solanum species[J]. Plant Physiol,1993,103 (3):793−803. doi: 10.1104/pp.103.3.793

    [5]

    Pearce RS. Molecular analysis of acclimation to cold[J]. Plant Growth Regul,1999,29 (1):47−76.

    [6]

    Gaburjakova J,Gaburjakova M. Reconstitution of ion channels in planar lipid bilayers:new approaches[J]. Adv Biomembr Lipid Self-Assem,2018,27:147−185.

    [7] 文彬. 植物种质资源超低温保存概述[J]. 植物分类与资源学报,2011,33(3):311−329.

    Wen B. An introduction to cryopreservation of plant germplasm[J]. Plant Diversity and Resources,2011,33 (3):311−329.

    [8]

    Gao Z,Li J,Zhu HP,Sun LL,Du YP,Zhai H. Using differential thermal analysis to analyze cold hardiness in the roots of grape varieties[J]. Sci Hortic,2014,174:155−163. doi: 10.1016/j.scienta.2014.05.002

    [9]

    Kuprian E,Briceño VF,Wagner J,Gilbert N. Ice barriers promote supercooling and prevent frost injury in reproductive buds,flowers and fruits of alpine dwarf shrubs throughout the summer[J]. Environ Exp Bot,2014,106:4−12. doi: 10.1016/j.envexpbot.2014.01.011

    [10] 陈仁伟,张晓煜,丁琦,杨豫,南学军,等. 基于差热分析技术的4个酿酒葡萄品种不同部位抗寒性综合评价[J]. 中国生态农业学报,2020,28(7):1022−1032. doi: 10.13930/j.cnki.cjea.200151

    Chen RW,Zhang XY,Ding Q,Yang Y,Nan XJ,et al. Comprehensive evaluation of cold resistance in different parts of four wine grape varieties based on different thermal analysis[J]. Chinese Journal of Eco-Agriculture,2020,28 (7):1022−1032. doi: 10.13930/j.cnki.cjea.200151

    [11]

    Malyshev AV, Beil I, Kreyling J. Differential thermal analysis: a fast alternative to frost tolerance measurements[M]//Hincha DK, Zuther E, eds. Plant Cold Acclimation: Methods and Protocols. New York: Humana, 2020: 23-31.

    [12]

    Kaya O,Kose C. How sensitive are the flower parts of the sweet cherry in sub-zero temperatures? Use of differential thermal analysis and critical temperatures assessment[J]. New Zeal J Crop Hort,2022,50 (1):17−31. doi: 10.1080/01140671.2021.1890156

    [13]

    Kaya O,Kose C,Sahin M. The use of differential thermal analysis in determining the critical temperatures of sweet cherry (Prunus avium L. ) flower buds at different stages of bud burst[J]. Int J Biometeorol,2021,65 (7):1125−1135. doi: 10.1007/s00484-021-02093-1

    [14] 于瑞凤,朱建军. 女贞和冬青卫矛叶片低温下胞外结冰模式的热力学新证据[J]. 植物学报,2018,53(2):203−211.

    Yu RF,Zhu JJ. New evidence for the mode of extracellular freezing in leaves of Ligustrum lucidum and Euonymus japonicus under low temperatures[J]. Chinese Bulletin of Botany,2018,53 (2):203−211.

    [15]

    Rajashekar CB,Burke MJ. Freezing characteristics of rigid plant tissues (development of cell tension during extracellular freezing)[J]. Plant Physiol,1996,111 (2):597−603. doi: 10.1104/pp.111.2.597

    [16]

    Zhu JJ,Beck E. Water relations of Pachysandra leaves during freezing and thawing:evidence for a negative pressure potential alleviating freeze-dehydration stress[J]. Plant Physiol,1991,97 (3):1146−1153. doi: 10.1104/pp.97.3.1146

    [17]

    Hacker J,Neuner G. Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis (IDTA)[J]. Tree Physiol,2007,27 (12):1661−1670. doi: 10.1093/treephys/27.12.1661

    [18]

    Cameron IL,Hunter KE,Ord VA,Fullerton GD. Relationships between ice crystal size,water content and proton NMR relaxation times in cells[J]. Physiol Chem Phys Med NMR,1985,17 (4):371−386.

    [19]

    Hansen J,Beck E. Evidence for ideal and non-ideal equilibrium freezing of leaf water in frosthardy ivy (Hedera helix) and winter barley (Hordeum vulgare)[J]. Bot Acta,1988,101 (1):76−82. doi: 10.1111/j.1438-8677.1988.tb00014.x

    [20]

    Pukacka S,Hoffmann SK,Goslar J,Pukacki PM,Wójkiewicz E. Water and lipid relations in beech (Fagus sylvatica L. ) seeds and its effect on storage behaviour[J]. Biochim Biophys Acta (BBA)-Gen Subj,2003,1621 (1):48−56. doi: 10.1016/S0304-4165(03)00046-1

图(3)  /  表(1)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  112
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-11
  • 修回日期:  2023-01-31
  • 网络出版日期:  2023-03-13
  • 刊出日期:  2023-10-29

目录

    /

    返回文章
    返回