Pollen Morphology of Three Selected Species from Annonaceae
-
摘要: 利用扫描电子显微镜对番荔枝科2属3种植物的干花粉形态进行了观察,旨在为番荔枝科植物花粉多样性及其演化关系提供形态学证据。观察结果显示,Asimina longifolia var. spatulata Kral、Asimina reticulate Shuttlew. ex Chapm.和Disepalum plagioneurum (Diels)D. M. Johnson 3种植物的花粉多为四合体,在Asimina reticulata内偶见二合体、三合体,Disepalum plagioneurum偶见多合体;四合体类型大多为偏菱形,A. reticulata和D. plagioneurum中偶见四角形;3种植物花粉表面纹饰分别为皱波状(rugulate)、微网状(microreticulate)和网状(reticulate)。花粉通过形成外壁短链接(short exine connections)或花粉联丝(pollen-connecting threads)的方式将四合体凝集成花粉块(pollinium),提高了单一传粉过程中卵细胞的受精几率。Asimina和Disepalum两属植物花粉在表面纹饰、四合体类型等方面都十分相似,支持两者在系统发育中亲缘关系较近的观点。Abstract: Dry pollen grains of Asimina longifolia var. spatulata, A. reticulata, and Disepalum plagioneurum were described based on scanning electron microscopy to provide evidence for phylogenetic analysis. Results showed that most pollen grains were tetrads. Occasionally,dyads and triads were found in A. reticulata,and polyads were also observed in D. plagioneurum. Most of the tetrads were rhomboidal tetrads,though tetragonal tetrads were also observed in A. reticulata and D. plagioneurum. The ornamentations of the pollen walls were regulate (A. longifolia var. spatulata),microreticulate (A. reticulata) or reticulate (D. plagioneurum). Pollen grains of neighboring tetrads were connected by either short exine connections or pollen-connecting threads. The function of the cohesion among tetrads was to enhance pollination efficiency by enabling fertilization of multiple ovules in a single pollinator visit. Wall ornamentation and tetrad pollen grains in Asimina were similar with those of Disepalum,which supports their close phylogenetic relationship.
-
Keywords:
- Annonaceae /
- Pollen morphology /
- Tetrads /
- Pollen-connecting threads
-
-
[1] Kessler PJA. Annonaceae[M]//Kubitzki K, Rohwer JG, Bittrich V, eds. The families and genera of vascular plants Ⅱ. Berlin: Springer-Verlag, 1993:93-129.
[2] Cronquist A. An Integrated System of Classification of Flowering Plants[M]. New York:Columbia University Press, 1981.
[3] The Angiosperm Phylogeny Group. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants:APG Ⅲ[J]. Bot J Linn Soc, 2009, 161:105-121.
[4] Sampson FB. Pollen diversity in some modern Magnoliids[J].Int J Plant Sci, 2000, 161:S193-S210.
[5] Knox RB, Mcconchie CA. Structure and Function of Compound Pollen[M]//Blackmore S, Ferguson IK, eds. Pollen and Spores, Form and Function. London:Academic Press, 1986:264-282.
[6] Fries RE. Annonaceae[M]//Melchior H ed. Die Naturlichen Pflanzenfamilien. Berlin:Duncker and Humblot, 1959:1-170.
[7] Walker JW. Unique type of angiosperm pollen from the family Annonaceae[J].Science, 1971, 172 (3983):565-567.
[8] Walker JW. Pollen morphology, phytogeography, and phylogeny of the Annonaceae[J]. Contrib Gray Herb Harvard Univ, 1971, 202:1-132.
[9] Le Thomas A. Ultrastructural characters of the pollen grains of African Annonaceae and their significance for the phylogeny of primitive angiosperms (first part)[J].Pollen et Spores, 1980, 22:267-342.
[10] Le Thomas A. Ultrastructural characters of the pollen grains of African Annonaceae and their significance for the phylogeny of primitive angiosperms (second part)[J].Pollen et Spores, 1981, 23:5-36.
[11] Walker JW. Contributions to the pollen morphology and phylogeny of the Annonaceae[J].Bot J Linn Soc, 1972, 65:173-178.
[12] Couvreur TLP, Botermans M, Van Heuven BJ, Van der Ham RWJM. Pollen morphology within the Monodora clade, a diverse group of five African Annonaceae genera[J].Grana, 2008, 47(3):185-210.
[13] Doyle JA, Le Thomas A. Evolution and phylogenetic significance of pollen in Annonaceae[J].Bot J Linn Soc, 2012, 169:190-221.
[14] Waha M. Sporoderm development of pollen tetrads in Asimina triloba (Annonaceae)[J].Pollen et Spores, 1987, 29:31-44.
[15] Gabarayeva NI. Sporoderm development in Asimina triloba (Annonaceae)Ⅰ. The developmental events before callose dissolution[J].Grana, 1992, 31:213-222.
[16] Gabarayeva NI. Sporoderm development in Asimina triloba (Annonaceae)Ⅱ. The developmental events after callose dissolution[J].Grana, 1993, 32:210-220.
[17] Tsou CH, Fu YL. Tetrad pollen formation in Annona (Annonaceae):proexine formation and binding mechanism[J]. Amer J Bot, 2002, 89:734-747.
[18] Tsou CH, Fu YL. Octad pollen formation in Cymbopetalum (Annonaceae):the binding mechanism[J]. Plant Syst Evol, 2007, 263:13-23.
[19] Su YCF, Saunders RMK. Pollen structure, tetrad cohesion and pollen-connecting threads in Pseu-duvaria (Annonaceae)[J]. Bot J Linn Soc, 2003, 143:69-78.
[20] Chaowasku T, Mols J, Van der Ham RWJM. Pollen morphology of Miliusa and relatives (Annonaceae)[J].Grana, 2008, 47:175-184.
[21] Doyle JA, Le Thomas A. Cladistic analysis and pollen evolution in Annonaceae[J]. Acta Bot Gallica, 1994, 141:149-170.
[22] Mols JB, Co DLV, Gravendeel B, Chatrou LW, Pirie MD, van der Ham RWJM, van Marle EJ, Kessler PJA. Morphological character evolution in thenmiliusoid clade (Annonaceae)[C]//Mols JB ed.Miliusa to Miliuseae to Miliusoid:identifying clades in Asian Annonaceae.Leiden:National Herbarium Nederland, 2004:37-75.
[23] Couvreur TLP, Pirie MD, Chatrou LW, Saunders RMK, Su YCF, Richardson JE, Erkens RHJ. Early evolutionary history of the flowering plant family Annonaceae:steady diversification and boreotropical geodispersal[J]. J Biogeogr, 2011, 38:664-680.
[24] Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A. Glossary of pollen and spore terminology[J].Rev Palaeobot Palynol, 2007, 143:1-81.
[25] Hesse M, Halbritter H, Weber M.Beschorneria yuccoides and Asimina triloba Dun:examples for proximal polar germinating pollen in angiosperms[J]. Grana, 2009, 48:151-159.
[26] Cruden RW, Jensen KG. Viscin threads, pollination efficiency and low pollen-ovule ratios[J].Amer J Bot, 1979, 66:875-879.
[27] Kress WJ. Sibling competition and evolution of pollen unit, ovule number, and pollen vector in an-giosperms[J]. Syst Bot, 1981, 6:101-112.
[28] 刘永, 徐凤霞. 四种番荔枝科植物花粉形态[J]. 植物分类与资源学报, 2012, 34 (5):443-452.
计量
- 文章访问数: 1503
- HTML全文浏览量: 0
- PDF下载量: 2599