高级检索+

伯乐树潜在地理分布时空格局模拟

郭飞龙, 徐刚标, 牟虹霖, 李赞

郭飞龙, 徐刚标, 牟虹霖, 李赞. 伯乐树潜在地理分布时空格局模拟[J]. 植物科学学报, 2020, 38(2): 185-194. DOI: 10.11913/PSJ.2095-0837.2020.20185
引用本文: 郭飞龙, 徐刚标, 牟虹霖, 李赞. 伯乐树潜在地理分布时空格局模拟[J]. 植物科学学报, 2020, 38(2): 185-194. DOI: 10.11913/PSJ.2095-0837.2020.20185
Guo Fei-Long, Xu Gang-Biao, Mou Hong-Lin, Li Zan. Simulation of potential spatiotemporal population dynamics of Bretschneidera sinensis Hemsl. based on MaxEnt model[J]. Plant Science Journal, 2020, 38(2): 185-194. DOI: 10.11913/PSJ.2095-0837.2020.20185
Citation: Guo Fei-Long, Xu Gang-Biao, Mou Hong-Lin, Li Zan. Simulation of potential spatiotemporal population dynamics of Bretschneidera sinensis Hemsl. based on MaxEnt model[J]. Plant Science Journal, 2020, 38(2): 185-194. DOI: 10.11913/PSJ.2095-0837.2020.20185

伯乐树潜在地理分布时空格局模拟

基金项目: 

生物安全与遗传资源管理项目(KJZXSA2019040);国家“十三五”重点研发计划(2016YFC0503103)。

详细信息
    作者简介:

    郭飞龙(1994-),男,硕士研究生,研究方向为林木遗传育种学(E-mail:guofeilong1117@163.com)。

    通讯作者:

    徐刚标,E-mail:gangbiaoxu@163.com

  • 中图分类号: Q948

Simulation of potential spatiotemporal population dynamics of Bretschneidera sinensis Hemsl. based on MaxEnt model

Funds: 

This work was supported by grants from the Biosafety and Genetic Resources Management Project (KJZXSA2019040) and National Key Research and Development Program (2016YFC0503103).

  • 摘要: 以伯乐树(Bretschneidera sinensis Hemsl.)为研究对象,基于现有的151个伯乐树居群分布点及12个气候变量,运用MaxEnt模型和GIS技术,模拟末次盛冰期、全新世中期、当前、未来(RCP 2.6、RCP 4.5、RCP 6.0和RCP 8.5)气候情景下的伯乐树潜在地理分布格局;采用受试者工作特征曲线(ROC)下的面积(AUC值),评价模拟的精度;综合分析测试增益、气候变量贡献率及置换重要值,探讨制约伯乐树地理分布的主导气候变量;基于分布面积比(Na)、生境变化程度(Ne),比较伯乐树在不同气候情景下的地理分布动态。ROC曲线结果显示,7种不同气候情景下的训练集与测试集AUC值均大于0.99,表明模型模拟精度极高。测试增益、气候变量贡献率及置换重要值显示,昼夜温差月均值、等温性和最干季度降水量是伯乐树潜在地理分布的限制因子。不同气候情景下伯乐树地理分布动态暗示,金佛山、大瑶山可能是伯乐树冰期多个微型避难所;末次盛冰期以来,伯乐树地理分布经历了扩张过程;未来不同气候情景下,其地理分布范围可能会发生不同程度(25%~47%)的收缩,其中RCP 8.5情境下,伯乐树居群生境破碎化最为严重。开展伯乐树资源调查、收集和遗传管理的国际合作,在气候适宜地区建立迁地保育林,是有效防止伯乐树遗传资源丢失的重要措施。
    Abstract: To model the potential distribution of Bretschneidera sinensis Hemsl. and compare the spatiotemporal population dynamics of B. sinensis under Last Glacial Maximum, Mid Holocene, Current, and Future periods (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5), 151 existing populations of this species and 12 climate variables were selected based on the MaxEnt model and GIS. Using the receiver-operating characteristic curve (ROC), we analyzed the credibility of the MaxEnt model. To identify the climate variables restricting the distribution of this species, we used training gain, percentage contribution, and permutation importance of the climate variables. The spatiotemporal population dynamics of B. sinensis were compared using the distribution area ratio (Na) and extent of habitat change (Ne), respectively. The area under the ROC showed that the AUC values of the training data and test data under the seven different climate scenarios were higher than 0.99. This indicated that the simulation accuracy of the MaxEnt model was extremely high. Training gain, climate variable contribution, and permutation importance revealed that the geographical distribution of B. sinensis was limited by mean diurnal range (mean of monthly), isothermality, and precipitation of the driest quarter. The spatiotemporal population dynamics of B. sinensis from the Last Glacial Maximum to Mid Holocene indicated that the Jinfoshan and Dayaoshan mountains likely provided micro-glacial refugia for this species, after which geographical distribution experienced an expansion. In the future, the potential geographical distribution of B. sinensis may diminish from 25%-46%, depending on changes in greenhouse gas emissions, with the range of B. sinensis being the smallest and most fragmented under RCP 8.5. Implementing international cooperation in the investigation, collection, and genetic management of this species, and establishing ex-situ forest gene conservation in climate friendly areas could be important ways to protect and restore this species.
  • [1]

    Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, et al. Extinction risk from climate change[J]. Nature, 2004, 427(6970):145-148.

    [2]

    Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. Impacts of climate change on the future of biodiversity[J]. Ecol Lett, 2012, 15(4):365-377.

    [3] 陈冬梅,康宏樟,刘春江. 中国大陆第四纪冰期潜在植物避难所研究进展[J]. 植物研究, 2011, 31(5):623-632.

    Chen DM, Kang HZ, Liu CJ. An overview on the potential Quaternary glacial refugia of plants in China mainland[J]. Bulletin of Botanical Research, 2011, 31(5):623-632.

    [4]

    Yang XQ, Kushwaha SPS, Saran S, Xu JC, Roy PS. MaxEnt modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecol Eng, 2013, 51:83-87.

    [5]

    Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology[J]. Ecol Model, 2000, 135:147-186.

    [6] 朱耿平, 刘国卿, 卜文俊, 高玉葆. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性, 2013, 21(1):90-98.

    Zhu GP, Liu GQ, Pu WJ, Gao YB. Ecological niche mode-ling and its applications in biodiversity conservation[J]. Biodiversity Science, 2013, 21(1):90-98.

    [7]

    Merow C, Smith MJ, Jr JAS. A practical guide to MaxEnt for modeling species distributions:what it does, and why inputs and settings matter[J]. Ecography, 2013, 36(10):1058-1069.

    [8]

    Kumar S, Stohlgren TJ. MaxEnt modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia[J]. J Ecol Nat Environ, 2009, 1(4):94-98.

    [9]

    Phillips SJ, Dudík M. Modeling of species distributions with MaxEnt:new extensions and a comprehensive evaluation[J]. Ecography, 2010, 31(2):161-175.

    [10] 张琴, 张东方, 吴明丽, 郭杰, 孙成忠, 谢彩香. 基于生态位模型预测天麻全球潜在适生区[J]. 植物生态学报, 2017, 41(7):770-778.

    Zhang Q, Zhang DF, Wu ML, Guo J, Sun CZ, Xie CX. Predicting the global areas for potential distribution of Gastrodia elata based on ecological niche models[J]. Chinese Journal of Plant Ecology, 2017, 41(7):770-778.

    [11]

    Verbruggen H, Tyberghein L, Belton GS, Mineur F, Jueterbock A, Hoarau G, et al. Improving transferability of introduced species' distribution models:new tools to forecast the spread of a highly invasive seaweed[J]. PLoS One, 2013, 8(6):e68337.

    [12]

    Chan LM, Brown JL, Yoder AD. Integrating statistical genetic and geospatial methods brings new power to phylogeography[J]. Mol Phylogenet Evol, 2011, 59(2):523-537.

    [13]

    The Angiosperm Phylogeny Group. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants:APG IV[J]. Bot J Linn Soc, 2016, 161(2):105-121.

    [14] 梁艳, 徐刚标, 张合平, 吴雪琴, 申响保, 王爱云. 南岭山地伯乐树天然种群和人工种群遗传多样性比较[J]. 林业科学, 2012, 48(12):45-52.

    Liang Y, Xu GB, Zhang HP, Wu XQ, Shen XB, Wang AY. Genetic diversity of natural and planted populations of Bretschneidera sinensis from Nanling region[J]. Scientia Silvae Sinicae, 2012, 48(12):45-52.

    [15] 徐刚标, 梁艳, 蒋燚, 刘雄盛, 胡尚力, 肖玉菲, 郝博搏. 伯乐树种群遗传多样性及遗传结构[J]. 生物多样性, 2013, 21(6):723-731.

    Xu GB, Liang Y, Jiang Y, Liu XS, Hu SL, Xiao YF, Hao BB. Genetic diversity and population structure of Bretschneidera sinensis, an endangered species[J]. Biodiversity Science, 2013, 21(6):723-731.

    [16] 胡普炜, 段磊, 王美娜, 王铮峰, 陈红锋. 基于AFLP分析的伯乐树(Bretschneidera sinensis)谱系地理学研究[J]. 植物科学学报, 2017, 35(6):815-824.

    Hu PW, Duan L, Wang MN, Wang ZF, Chen HF. Phylogeographic study on Bretschneidera sinensis inferred from AFLP data[J]. Plant Science Journal, 2017, 35(6):815-824.

    [17]

    Wang MN, Duan L, Qiao Q, Wang ZF, Zimmer EA, Li ZC, Chen HF. Phylogeography and conservation genetics of the rare and relict Bretschneidera sinensis (Akania-ceae)[J]. PLoS One, 2018, 13(1):e0189034.

    [18]

    Ronse de Craene LP, Aleck Yang TY, Peter S, Erik FS. Floral anatomy and systematics of Bretschneidera (Bretschneideraceae)[J]. Bot J Linn Soc, 2002,139:29-45.

    [19] 俞筱押, 田华林, 郭治友. 贵州南部伯乐树群落特征及其种间关系研究[J]. 四川农业大学学报, 2016, 34(1):29-33.

    Yu XY, Tian HL, Guo ZY. Community characteristics and inter specific relationship of Bretschneidera sinensis in southern Guizhou, China[J]. Journal of Sichuan Agricultural University, 2016, 34(1):29-33.

    [20] 王娟, 刘仁林. 濒危植物伯乐树传粉生物学特性研究[J]. 中国野生植物资源, 2016, 35(3):48-51.

    Wang J, Liu RL. Pollination biology of endangered Bretschneidera sinensis Hemsl[J]. Chinese Wild Plant Resources, 2016, 35(3):48-51.

    [21] 王娟, 刘仁林, 牛来春. 伯乐树雌雄配子体发育的细胞学观察[J]. 江西农业大学学报, 2016, 38(4):681-686.

    Wang J, Liu RL, Niu LC. Studies on the cytological observation of development of male and female gametophytes in Bretschneidera sinensis[J]. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(4):681-686.

    [22] 龚维, 夏青, 陈红锋, 俞新华, 伍菲. 珍稀濒危植物伯乐树的潜在适生区预测[J]. 华南农业大学学报, 2015, 36(4):98-104.

    Gong W, Xia Q, Chen HF, Yu XH, Wu F. Prediction of potential distributions of Bretschneidera sinensis, an rare and endangered plant species in China[J]. Journal of South China Agricultural University, 2015, 36(4):98-104.

    [23]

    Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists[J]. Divers Distrib, 2011, 17(1):43-57.

    [24] 孟艺宏, 徐璕, 姜小龙, 徐刚标. 双花木属植物潜在分布区模拟与分析[J]. 生态学报, 2019, 39(8):2816-2825.

    Meng YH, Xu X, Jiang XL, Xu GB. Potential distribution modeling and analysis of Disanthus Maxim.[J] . Acta Ecologica Sinica, 2019, 39(8):2816-2825.

    [25]

    Jiang XL, Deng M, Li Y. Evolutionary history of subtropical evergreen broad-leaved forest in Yunnan Plateau and adjacent areas:an insight from Quercus schottkyana (Fagaceae)[J]. Tree Genet Genomes, 2016, 12(6):104.

    [26]

    Sillero N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods[J]. Ecol Model, 2011, 222(8):1343-1346.

    [27] 陈新美, 雷渊才, 张雄清, 贾宏炎. 样本量对MaxEnt模型预测物种分布精度和稳定性的影响[J]. 林业科学, 2012, 48(1):53-59.

    Chen XM, Lei YC, Zhang XQ, Jia HY. Effects of sample sizes on accuracy and stability of Maximum Entropy Model in predicting species distribution[J]. Scientia Silvae Sinicae, 2012, 48(1):53-59.

    [28] 陈晓阳, 沈熙环. 林木育种学[M]. 北京:高等教育出版社, 2005.
    [29]

    Jackson ST, Overpeck JT. Responses of plant populations and communities to environmental changes of the Late Quaternary[J]. Paleobiology, 2009, 26(4):194-220.

    [30]

    Tzedakis PC, Lawson IT, Frogley MR, Hewitt GM, Preece RC. Buffered tree population changes in a Quaternary refugium:evolutionary implications[J]. Science, 2002, 297:2044-2047.

    [31] 中国第四纪孢粉数据库小组. 中国中全新世(6 ka BP)和末次盛冰期(18 ka BP)生物群区的重建[J]. 植物学报, 2010, 42(11):1201-1209.

    Members of China Quaternary Pollen Data Base. Pollen-based biome reconstruction at Middle Holocene(6 ka BP) and Last Glacial Maximum (18 ka BP) in China[J]. Journal of Integrative Plant Biology, 2010, 42(11):1201-1209.

    [32]

    Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM. Beyond predictions:biodiversity conservation in a changing climate[J]. Science, 2011, 332(6025):53-58.

    [33]

    Qian H, Ricklefs RE. Palaeovegetation (communications arising):diversity of temperate plants in East Asia[J]. Nature, 2001, 413(6852):100-106.

    [34]

    Austin MP, Niel KPV. Improving species distribution models for climate change studies:variable selection and scale[J]. J Biogeogr, 2011, 38(1):1-8.

  • 期刊类型引用(20)

    1. 吴晓昱. 基于MaxEnt模型预测伯乐树生境适宜性评价. 智慧农业导刊. 2024(07): 21-26 . 百度学术
    2. 汪建亚,杨春惠,吴昊,汪明. 湖北省林木种质资源保存区划研究. 湖北大学学报(自然科学版). 2024(03): 330-338 . 百度学术
    3. 杨帆,赵远征,张晓明,王东,周洪友. 基于MaxEnt模型的腐烂茎线虫在内蒙古地区适生区预测. 生物安全学报(中英文). 2024(02): 161-168 . 百度学术
    4. 黄导,张炎,杨斌,李宗波. 基于最优MaxEnt模型预测小粒绒盾小蠹的潜在适生区. 四川动物. 2024(03): 251-263 . 百度学术
    5. 云英英,范秋云,史佑海. 基于最大熵模型的海南杜鹃在中国的潜在地理分布. 热带作物学报. 2024(05): 1031-1039 . 百度学术
    6. 汪庆兵,王金斗,尹积华,熊丽琼,叶蕾,朱悦辰. 伯乐树生物学特性与繁育技术研究进展. 现代农业科技. 2024(11): 117-121 . 百度学术
    7. 周可柔,陈卓,余著成,钟洋,尚策. 仙霞岭保护区伯乐树种群结构及遗传多样性. 北京林业大学学报. 2024(11): 76-82 . 百度学术
    8. 谭显胜,段仁燕,邹乐,张涵,胡伟. 全球气候变暖对极小种群植物扣树生境适宜性的影响. 生命科学研究. 2023(01): 56-62 . 百度学术
    9. 金冬梅,杨灵,许哲平,肖翠,罗茂芳,马克平. 国家标本资源共享平台(NSII)支撑生物多样性科学研究的成效分析. 广西植物. 2023(08): 1501-1515 . 百度学术
    10. 唐兴港,袁颖丹,张金池. 气候变化对杉木适生区和生态位的影响. 植物研究. 2022(01): 151-160 . 百度学术
    11. 赖文峰,叶兴状,文国卫,施晨阳,张伟皓,叶利奇,张国防. 基于优化后的MaxEnt模型对珍贵藏药桃儿七潜在适生区分析. 福建农林大学学报(自然科学版). 2022(01): 112-120 . 百度学术
    12. 欧阳泽怡,欧阳硕龙,吴际友,周志春,李志辉,董帅昌. 最大熵模型在植物适生区预测应用中的研究进展. 湖南林业科技. 2022(01): 83-88 . 百度学术
    13. 李浩铭,何庆海,余著成,石从广,诸葛菲,王梅芳,李因刚. 不同基质配比对伯乐树幼苗生长与生理特性的影响. 浙江林业科技. 2022(06): 87-93 . 百度学术
    14. 阙雄剑,谢一青,王益和. 珍稀濒危植物——伯乐树. 福建林业. 2022(06): 17-18 . 百度学术
    15. 李浩铭,余著成,陈卓,柳新红,李因刚. 光照强度对伯乐树幼苗生长及相关生理指标的影响. 西南林业大学学报(自然科学). 2021(03): 23-30 . 百度学术
    16. 黄睿智,于涛,赵辉,张声凯,景洋,李俊清. 气候变化背景下濒危植物梓叶槭在中国适生分布区预测. 北京林业大学学报. 2021(05): 33-43 . 百度学术
    17. 温馨,陈勇,陈江林,邓文平. 赣江源自然保护区伯乐树次生林群落特征及种间关联性. 南方林业科学. 2021(02): 7-11 . 百度学术
    18. 刘粉粉,徐刚标,李恬甜,罗常莎. 伯乐树转录组SSR分布特征及其引物开发. 植物科学学报. 2021(03): 288-296 . 本站查看
    19. 唐兴港,袁颖丹,张星,张金池. 板栗树种在中国水土流失区的分布及其环境因子. 水土保持通报. 2021(02): 345-352 . 百度学术
    20. 唐兴港,袁颖丹,张金池. 气候变化对油松潜在地理分布时空格局的影响. 东北林业大学学报. 2021(09): 1-7 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  722
  • HTML全文浏览量:  2
  • PDF下载量:  617
  • 被引次数: 26
出版历程
  • 收稿日期:  2019-07-04
  • 修回日期:  2019-09-09
  • 网络出版日期:  2022-10-31
  • 发布日期:  2020-04-27

目录

    /

    返回文章
    返回