Characterization and development of SSR markers from transcriptome sequence of Bretschneidera sinensis Hemsl.
-
摘要: 基于伯乐树(Bretschneidera sinensis Hemsl.)转录组测序数据,采用生物信息学方法分析该物种转录组中SSR位点的分布特征,利用TP-M13-SSR (Simple sequence repeat with tailed primer M13)方法检测12株无亲缘关系样本SSR引物位点的多态性。结果显示,8772个SSR位点分布在6732条unigene序列上,SSR位点出现频率和分布密度分别为25.48%和1/4.39 kb。不同重复基元类型中,单核苷酸、2核苷酸和3核苷酸为主要SSR基元类型,SSR数分别占SSR总数的53.72%、29.42%和15.42%。其中,2核苷酸基元类型中,AG/CT基元出现的SSR位点最多,占总数的22.21%;3核苷酸基元类型中,AAG/CTT基元分布的SSR位点最为丰富,ACC/GGT和ATC/ATG次之。120对自主开发的SSR引物中,有68对扩增产物检测到目的片段,其中有49对引物位点呈现多态性,多态位点比例为72.06%;单个位点等位基因数目为2 ~ 7,平均单个位点等位基因数为3.55。研究结果表明基于转录组序列开发的伯乐树SSR位点多态性较高。Abstract: Bretschneidera sinensis Hemsl. is a model plant for research on angiosperm phylogeny, paleogeography, and paleoclimatology. To develop simple sequence repeat(SSR) markers for studies on population genetics of B. sinensis, candidate SSR loci were searched based on high-throughput sequencing and characterized using bioinformatics. Furthermore, SSR primer locus polymorphism in 12 genotypes without affinities was detected by simple sequence repeats with tailed primers. A total of 8772 SSR loci were obtained, which were distributed in 6732 unigenes. The appearance frequency and distribution density of SSR loci were 25.48% and 1/4.39 kb, respectively. In all SSR loci, single nucleotides, dinucleotides, and trinucleotides were the main repeat motif types, accounting for 53.72%, 29.42%, and 15.42% of total SSR loci, respectively. AG/CT was the most abundant dinucleotide repeat motif, accounting for 22.21% of total SSR loci. AAG/CTT was the most abundant trinucleotide repeat motif, followed by ACC/GGT and ATC/ATG. Of the 120 primers, the target fragment was detected in 68 pairs of primer products and 49 were successfully amplified in all tested genotypes and were verified as polymorphic, with the proportion of polymorphic loci being 72.06%. The number of alleles per locus ranged from 2 to 7 (average of 3.55). These results suggest that the SSR loci developed from on transcriptome sequence of B. sinensis were highly polymorphic. Analysis of the distribution characteristics of the high-throughput transcriptome sequence of B. sinensis could be helpful in gene mining, and these new polymorphic SSR markers should provide a valuable molecular tool for investigating the genetic diversity, population structure, phylogeographic history, and construction of core collection for ex situ conservation of this species.
-
Keywords:
- Bretschneidera sinensis /
- Transcriptome /
- SSR marker /
- Polymorphism
-
-
[1] 邢福武. 中国的珍稀濒危植物[M]. 长沙:湖南科技出版社,2005. [2] The Angiosperm Phylogeny Group. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants:APGⅣ [J]. Bot J Linn Soc, 2016, 161(2):105-121.
[3] 郭飞龙, 徐刚标, 牟虹霖, 李赞. 伯乐树潜在地理分布时空格局模拟[J]. 植物科学学报, 2020, 38(2):185-194. Guo FL, Xu GB, Mou HL, Li Z. Simulation of potential spatiotemporal population dynamics of Bretschneidera sinensis Hemsl. based on MaxEnt model[J]. Plant Science Journal, 2020, 38(2):185-194.
[4] 彭沙沙, 黄华宏, 童再康, 周厚君, 时剑, 等. 濒危植物伯乐树遗传多样性的初步研究[J]. 植物遗传资源, 2011, 12(3):362-367. Pen SS, Huang HH, Tong ZK, Zhou HJ, Shi J, et al. Genetic diversity of endangered plant Bretschneidera sinensis[J]. Journal of Plant Genetic Resources, 2011, 12(3):362-367.
[5] 林乐静, 金楚齐, 郑春豪, 周亚美, 周盈. 武夷山地伯乐树种群遗传多样性的ISSR分析[J]. 植物研究, 2015, 35(4):559-563. Lin LJ, Jin CQ, Zheng CH, Zhou YM, Zhou Y. ISSR ana-lysis on the genetic diversity of relic plant Bretschneidera sinensis from Wuyishan region[J]. Bulletin of Botanical Research, 2015, 35(4):559-563.
[6] 胡普炜, 段磊, 王美娜, 王铮峰, 陈红锋. 基于AFLP分析的伯乐树(Bretschneidera sinensis)谱系地理学研究[J]. 植物科学学报, 2017, 35(6):815-824. Hu PW, Duan L, Wang MN, Wang ZF, Chen HF. Phylogeographic study on Bretschneidera sinensis inferred from AFLP data[J]. Plant Science Journal, 2017, 35(6):815-824.
[7] Kalia RK, Rai MK, Kalia S, Rohtas S, Dhawan AK. Microsatellite markers:an overview of the recent progress in plants[J]. Euphytica, 2011, 177(3):309-334.
[8] Mishima K, Hirao T, Urano S, Watanabe A, Takata K. Isolation and characterization of microsatellite markers from Robinia pseudoacacia L.[J]. Mol Ecol Resour, 2009, 9(3):850-852.
[9] Guan BC, Song GR, Ge G. Sixteen microsatellite markers developed from Bretschneidera sinensis (Bretschneide-raceae)[J].Conserv Genet Resour, 2012, 4(3):673-675.
[10] Li M, Chen HF, Wang ZF, Zhang S. Isolation and characterization of polymorphic microsatellite markers[CX1] [CX]in the endangered species Bretschneidera sinensis Hemsl.[J]. Gent Mol Res, 2016, 15(3):1-5.
[11] 李小白, 向林, 罗洁, 胡标林, 田胜平, 等. 转录组测序(RNA-seq)策略及其数据在分子标记开发上的应用[J]. 中国细胞生物学学报, 2013, 35(5):720-726. Li XB, Xiang L, Luo J, Hu BL, Tian SP, et al. The strategy of RNA-seq, application and development of molecular marker derived from RNA-seq[J]. Chinese Journal of Cell Biology, 2013, 35(5):720-726.
[12] 孟艺宏, 徐璕, 徐刚标. 基于转录组序列的长柄双花木SSR标记开发[J]. 植物遗传资源学报, 2018, 19(4):740-747. Meng YH, Xu X, Xu GB. Development of SSR markers based on transcriptome sequences of Disanthus cercidifolius var. longipes[J].Journal of Plant Genetic Resources, 2018, 19(4):740-747.
[13] 林开勤, 李岩, 赵德刚. 杜仲转录组SSR发掘及标记开发[J]. 分子植物育种, 2016, 14(6):1548-1558. Lin KQ, Li Y, Zhao DG. SSR mining and marker development in Eucommia ulmoides oliver transcriptome[J].Molecular Plant Breeding, 2016, 14(6):1548-1558.
[14] 武星彤, 陈璐, 王敏求, 张原, 李鑫玉, 等. 基于丹霞梧桐转录组数据的EST-SSR标记开发[J]. 植物遗传资源学报, 2019, 20(5):1325-1333. Wu XT, Chen L, Wang MQ, Zhang Y, Li XY, et al.Cha-racterization and development of EST-SSR markers from transcriptome datasets of Firmiana danxiaensis H. H. Hsue & H. S. Kiu[J]. Journal of Plant Genetic Resources, 2019, 20(5):1325-1333.
[15] 杨彬, 许蔷薇, 牛明月, 楼雄珍, 黄华宏, 等. 云锦杜鹃转录组SSR分析及其分子标记开发[J]. 核农学报, 2018, 32(12):53-63. Yang B, Xu QW, Niu MY, Lou XZ, Huang HH, et al. Development of SSR markers based on transcriptome sequence of Rhododendron fortunei Lindl.[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(12):53-63.
[16] 时小东, 朱学慧, 盛玉珍, 张国庆, 陈放. 基于转录组序列的楠木SSR分子标记开发[J]. 林业科学, 2016, 52(11):71-78. Shi XD, Zhu XH, Sheng YZ, Zhang GQ, Chen F. Deve-lopment of SSR Markers based on transcriptome sequence of Phoebe zhennan[J]. Scientia Silvae Sinicae, 2016, 52(11):71-78.
[17] Xu M, Sun Y, Li H. EST-SSRs development and paternity analysis for Liriodendron spp.[J]. New Forests,2010, 40(3):361-382.
[18] Xiang XY, Zhang ZX, Wang ZG, Zhang XP, Wu GL. Transcriptome sequencing and development of EST-SSR markers in Pinus dabeshanensis, an endangered conifer endemic to China[J]. Mol Breeding, 2015, 35(8):158.
[19] Varshney PK, Graner A, Sorrells ME. Genic microsatellite markers in plants:features and applications[J]. Trends Biotechnol, 2005, 23(1):48-55.
[20] Ferrão LFV, Caixeta ET, Pena G, Zambolim EZ, Cruz CD, et al. New EST-SSR markers of Coffea arabica:transferability and application to studies of molecular characte-rization and genetic mapping[J]. Mol Breeding, 2015, 35(1):31.
[21] 张振, 张含国, 莫迟, 张磊. 红松转录组SSR分析及EST-SSR标记开发[J]. 林业科学, 2015, 51(8):114-120. Zhang Z, Zhang HG, Mo C, Zhang L. Transcriptome sequencing analysis and development of EST-SSR markers for Pinus koraiensis[J]. Scientia Silvae Sinicae, 2015, 51(8):114-120.
[22] Li H, Ruan CJ, Wang L, Ding J. Development of RNA-seq SSR Markers and application to genetic relationship analysis among sea buckthorn germplasm[J]. J Am Soc Hortic Sci, 2017, 142(3):200-208.
[23] Kantety RV, Rota ML, Matthews DE, Me Sorrells. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat[J]. Plant Mol Biol, 2002, 48(5-6):501-510.
[24] Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with non-repetitive DNA in plant genomes[J]. Nat Gent, 2002, 30(2):194-200.
[25] 李炎林, 杨星星, 张家银, 黄三文, 熊兴耀. 南方红豆杉转录组SSR挖掘及分子标记的研究[J]. 园艺学报, 2014, 41(4):735-745. Li YL, Yang XX, Zhang JY, Huang SW, Xiong XX. Stu-dies on SSR molecular markers based on transcriptome of Taxus chinensis var. mairei[J]. Acta Horticulturae Sinica, 2014, 41(4):735-745.
[26] 李响, 杨楠, 赵凯歌, 陈玉星, 唐锐君, 陈龙清. 蜡梅转录组EST-SSR标记开发与引物筛选[J]. 北京林业大学学报, 2013, 35(S1):25-32. Li X, Yang N, Zhao KG, Chen YX, Tang RJ, Chen LQ.Development and primer selection of EST-SSR molecular markers based on transcriptome sequencing of Chimonanthus praecox[J].Journal of Beijing Forestry University, 2013, 35(S1):25-32.
[27] 文亚峰, 韩文军, 周宏, 徐刚标. 杉木转录组SSR挖掘及EST-SSR标记规模化开发[J]. 林业科学,2015, 51(11):40-49. Wen YF, Han WJ, Zhou H, Xu GB. SSR mining and development of EST-SSR markers for Cunninghamia lanceolata based on transcriptome sequences[J]. Scientia Silvae Sinicae, 2015, 51(11):40-49.
[28] Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD. The genome-wide determinants of human and chimpanzee microsatellite evolution[J]. Genome Res, 2008, 18(1):30.
-
期刊类型引用(7)
1. 李锦超,董俊美,贾凯旋,孟义江,杨太新,侯孟泽,葛淑俊. 基于山药转录组测序的EST-SSR信息分析及分子标记开发. 分子植物育种. 2025(04): 1269-1277 . 百度学术
2. 郑永杰,廖枝锋,刘新亮,张月婷,涂白连,伍艳芳. 基于转录组测序的浙江楠EST-SSR分子标记开发. 南方林业科学. 2024(05): 8-12 . 百度学术
3. 周元杰,冯源恒,吴东山,聂海泉,刘海梅,杨章旗. 大叶栎SSR引物开发及育种群体指纹图谱构建. 基因组学与应用生物学. 2024(Z1): 1521-1532 . 百度学术
4. 李辉,冯源恒,唐生森,杨章旗. 基于转录组测序的枫香EST-SSR引物开发及有效性评价. 广西植物. 2023(02): 327-335 . 百度学术
5. 娄永峰,甘然,朱成磊,肖复明,高志民. 黄秆乌哺鸡竹转录组EST-SSR分子标记开发与应用. 植物科学学报. 2022(03): 355-364 . 本站查看
6. 李浩铭,何庆海,余著成,石从广,诸葛菲,王梅芳,李因刚. 不同基质配比对伯乐树幼苗生长与生理特性的影响. 浙江林业科技. 2022(06): 87-93 . 百度学术
7. 柳娟,岳春雷,朱弘,李贺鹏,李海波. 日本荚蒾转录组SSR位点分析及多态性SSR标记开发. 分子植物育种. 2022(21): 7183-7192 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 485
- HTML全文浏览量: 0
- PDF下载量: 361
- 被引次数: 8