高级检索+

中国辣椒热胁迫转录因子的全基因组鉴定及热胁迫响应的初步分析

高崇伦, 黄家权, 成善汉, 汪志伟, 尹黎燕

高崇伦, 黄家权, 成善汉, 汪志伟, 尹黎燕. 中国辣椒热胁迫转录因子的全基因组鉴定及热胁迫响应的初步分析[J]. 植物科学学报, 2020, 38(2): 249-259. DOI: 10.11913/PSJ.2095-0837.2020.20249
引用本文: 高崇伦, 黄家权, 成善汉, 汪志伟, 尹黎燕. 中国辣椒热胁迫转录因子的全基因组鉴定及热胁迫响应的初步分析[J]. 植物科学学报, 2020, 38(2): 249-259. DOI: 10.11913/PSJ.2095-0837.2020.20249
Gao Chong-Lun, Huang Jia-Quan, Cheng Shan-Han, Wang Zhi-Wei, Yin Li-Yan. Genome-wide identification of heat stress transcription factors and preliminary analysis of heat stress responses in Capsicum chinense Jacq.[J]. Plant Science Journal, 2020, 38(2): 249-259. DOI: 10.11913/PSJ.2095-0837.2020.20249
Citation: Gao Chong-Lun, Huang Jia-Quan, Cheng Shan-Han, Wang Zhi-Wei, Yin Li-Yan. Genome-wide identification of heat stress transcription factors and preliminary analysis of heat stress responses in Capsicum chinense Jacq.[J]. Plant Science Journal, 2020, 38(2): 249-259. DOI: 10.11913/PSJ.2095-0837.2020.20249

中国辣椒热胁迫转录因子的全基因组鉴定及热胁迫响应的初步分析

基金项目: 

国家重点研发计划(2018YFD1000800);国家自然科学基金项目(31760578);海南大学高层次人才启动基金(KYQD1656)。

详细信息
    作者简介:

    高崇伦(1995-),女,硕士研究生,研究方向为植物发育生物学(E-mail:gaochonglun_37@163.com)。

    通讯作者:

    汪志伟,E-mail:wangzhiwei@hainu.edu.cn

    尹黎燕,E-mail:lyyin@163.com

  • 中图分类号: Q943.2

Genome-wide identification of heat stress transcription factors and preliminary analysis of heat stress responses in Capsicum chinense Jacq.

Funds: 

This work was supported by grants from the National Key Research and Development Program of China (2018YFD1000800), National Natural Science Foundation of China (31760578), and Startup Funding from Hainan University (KYQD1656).

  • 摘要: 采用生物信息学方法,从中国辣椒(Capsicum chinense Jacq.)全基因组序列中鉴定得到28个热胁迫转录因子(HSF)候选基因,并对这些候选基因的染色体分布、基因结构及编码蛋白的3D结构特征进行了分析。结果显示:28个候选基因的编码蛋白长度为128 ~ 526 aa;系统发育分析结果表明,HSF可分为A、B、C 3个亚家族。进一步对热胁迫处理后的中国辣椒种质进行转录组分析,共检测到27个HSF转录本,与对照组相比,实验组中有25个基因对热胁迫有不同程度的响应。
    Abstract: Based on bioinformatics, 28 HSF candidate genes were identified in the whole genome sequence of Capsicum chinense Jacq. The chromosome distribution, gene structure, and 3D characteristics of these candidate genes were analyzed. Results showed that the protein length of the 28 candidate genes ranged from 128 to 526 aa. Phylogenetic analysis showed that HSF could be divided into A, B, and C subfamilies. In total, 27 HSF transcripts were detected by RNA-seq. Compared with the control group, 25 genes in the experimental group exhibited different responses under heat stress.
  • [1]

    Hu Y, Han YT, Wei W, Li YJ, Zhang K, et al. Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fraga-ria vesca[J]. Front Plant Sci, 2015, 6:736.

    [2]

    Wang J, Sun N, Deng T, Zhang LD, Zuo KJ. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum)[J]. BMC Genomics, 2014, 15:961.

    [3]

    Wang PF, Song H, Li CS, Li PC, Li AQ, et al. Genome-wide dissection of the heat shock transcription factor family genes in Arachis[J]. Front Plant Sci, 2017, 8:106.

    [4]

    Scharf KD, Berberich T, Ebersberger I, Nover L. The plant heat stress transcription factor (Hsf) family:structure, function and evolution[J]. Biochim Biophys Acta, 2012, 1819(2):104-119.

    [5]

    Jin GH, Gho HJ, Jung KH. A systematic view of rice heat shock transcription factor family using phylogenomic analysis[J]. J Plant Physiol, 2013, 170(3):321-329.

    [6]

    Guo M, Lu JP, Zhai YF, Chai WG, Gong ZH, et al. Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.)[J]. BMC Plant Biol, 2015, 15:151.

    [7]

    Åkerfelt M, Morimoto RI, Sistonen L. Heat shock factors:integrators of cell stress, development and lifespan[J]. Nat Rev Mol Cell Biol, 2010, 11(8):545-555.

    [8]

    Garbuz DG. Regulation of heat shock gene expression in response to stress[J]. Mol Biol, 2017, 51(3):400-417.

    [9]

    Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, et al. Heat stress response in plants:a complex game with chaperones and more than twenty heat stress transcription factors[J].J Biosciences, 2004, 29(4):471-487.

    [10]

    Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A. Heat shock factor gene family in rice:genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses[J]. Plant Physiol Biochem, 2009, 47(9):785-795.

    [11]

    Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, et al. Arabidopsis and the heat stress transcription factor world:how many heat stress transcription factors do we need?[J]. Cell Stress Chaperones, 2001, 6(3):177-189.

    [12]

    Koskull-Döring PV, Scharf KD, Nover L. The diversity of plant heat stress transcription factors[J]. Trends Plant Sci, 2007, 12(10):452-457.

    [13]

    Schmidt R, Schippers JH, Welker A, Mieulet D, Guiderdoni E, et al. Transcription factor OsHsfC1b regulates salt tolerance and development in Oryza sativa ssp. japonica[J]. AoB Plants, 2012:pls011.

    [14]

    Yang ZF, Wang YF, Gao Y, Zhou Y, Zhang EY, et al. Adaptive evolution and divergent expression of heat stress transcription factors in grasses[J]. BMC Evol Biol, 2014, 14:147.

    [15] 赵明宣, 胡晓君. 植物热激转录因子研究进展[J]. 植物学研究, 2018, 7(2):158-163.

    Zhao MX, Hu XJ. The research progress of heat shock transcription factors in plants[J]. Botanical Research, 2018, 7(2):158-163.

    [16]

    Liu B, Liu LL, Tian LY, Cao WX, Zhu Y, et al. Post-hea-ding heat stress and yield impact in winter wheat of China[J]. Global Change Biol, 2014, 20:372-381.

    [17]

    Pagamas P, Nawata E. Sensitive stages of fruit and seed development of chili pepper (Capsicum annuum L. var. shishito) exposed to high-temperature stress[J]. Sci Horti, 2008, 117:21-25.

    [18] 邹学校. 中国辣椒[M]. 北京:中国农业出版社, 2002.
    [19]

    Kim S, Park J, Yeom SI, Kim YM, Seo E, et al. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication[J]. Genome Biol, 2017, 18:210.

    [20]

    Prändl R, Hinderhofer K, Eggers-Schumacher G, Schöffl F. HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants[J]. Mol Gen Genet, 1998, 258:269-278.

    [21]

    Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, et al. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis[J]. Planta, 2008, 227(5):957-967.

    [22]

    Giorno F, Wolters-Arts M, Grillo S, Scharf KD, Vriezen WH, et al. Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers[J]. J Exp Bot, 2010, 61(2):453-462.

    [23]

    Qin C, Yu CS, Shen YO, Fang XD, Chen L, et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization[J]. Proc Natl Acad Sci USA, 2014, 111(14):5135-5140.

    [24] 陈勇兵, 王燕, 张海利. 番茄热激转录因子Hsf基因家族鉴定及表达分析[J]. 农业生物技术学报, 2015, 23(4):492-501.

    Chen YB, Wang Y, Zhang HL. Identification and expression analysis of heat shock factor (Hsf) gene family in tomato (Solanum lycopersicum)[J]. Journal of Agricultural Biotechnology, 2015, 23(4):492-501.

    [25]

    Zhu XY, Huang CQ, Zhang L, Liu HF, Yu JH, et al. Systematic analysis of Hsf family genes in the Brassica napus genome reveals novel responses to heat, drought and high CO2 stresses[J]. Front Plant Sci, 2017, 8:1174.

    [26]

    Shim D, Hwang JU, Lee J, Lee S, Choi Y, et al. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice[J]. Plant Cell, 2009, 21:4031-4043.

    [27]

    Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant heat stress response[J]. Trends Plant Sci, 2017, 22(1):53-65.

    [28]

    Guo LH, Chen SN, Liu KH, Liu YF, Ni LH, et al. Isolation of heat shock factor HsfA1a-binding sites in vivo revealed variations of heat shock elements in Arabidopsis thaliana[J]. Plant Cell Physiol, 2008, 49(9):1306-1315.

    [29]

    Zhang J, Liu BB, Li JB, Zhang L, Wang Y, et al. Hsf and Hsp gene families in Populus:genome-wide identification, organization and correlated expression during development and in stress responses[J]. BMC Genomics, 2015, 16:181.

    [30]

    Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermoto-lerance[J]. Plant Physiol, 2011, 157(3):1243-1254.

    [31]

    Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates[J]. Proc Natl Acad Sci USA, 2007, 104(3):1075-1080.

    [32]

    Wang XY, Zhuang LL, Shi Y, Huang BER. Up-Regulation of HSFA2c and HSPs by ABA contributing to improved heat tolerance in tall fescue and Arabidopsis[J]. Int J Mol Sci, 2017, 18:1981.

    [33]

    Wang YX, Zhang HL, Hou PF, Su XY, Zhao PF, et al. Foliar-applied salicylic acid alleviates heat and high light stress induced photoinhibition in wheat (Triticum aestivum) during the grain filling stage by modulating the psbA gene transcription and antioxidant defense[J]. Plant Growth Regul, 2014, 73(3):289-297.

    [34]

    Zhang CX, Feng BH, Chen TT, Zhang XF, Tao LX, et al. Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress[J]. Plant Growth Regul, 2017, 83:313-323.

  • 期刊类型引用(1)

    1. 丁亚东,舒黄英,高崇伦,郝园园,成善汉,朱国鹏,汪志伟. 中国辣椒热激蛋白HSP70基因家族分析. 植物科学学报. 2021(02): 152-162 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  775
  • HTML全文浏览量:  0
  • PDF下载量:  748
  • 被引次数: 2
出版历程
  • 收稿日期:  2019-07-31
  • 修回日期:  2019-09-02
  • 网络出版日期:  2022-10-31
  • 发布日期:  2020-04-27

目录

    /

    返回文章
    返回