Composition and content analysis of anthocyanidins and proanthocyanidins in ferns
-
摘要: 以7目14科共44种蕨类植物为材料,对它们的花青素、原花青素和总黄酮含量进行检测。结果显示,44种蕨类植物均含有花青素,较为进化的水龙骨目植物的总花青素平均含量明显高于其它蕨类植物。矢车菊素、飞燕草素和天竺葵素是蕨类植物主要的花青素类型,其中乌毛蕨科植物富含矢车菊素,鳞毛蕨科植物富含飞燕草素。本研究中大部分蕨类含有原花青素,水龙骨目植物的原花青素平均含量高于其它蕨类。研究结果表明,蕨类植物中花青素和原花青素等黄酮类化合物的分布与植物科属相关,推测花青素与蕨类植物的生长发育和抗逆过程相关。Abstract: In this paper, the contents of anthocyanidins, proanthocyanidins, and total flavonoids in the leaves of 44 species of ferns from 14 families in seven orders were detected. Results showed that all 44 species of ferns contained anthocyanidins. The average content of total anthocyanidins in Polypodiales ferns was significantly higher than that in the other fern orders. Cyanidin, delphinium, and pelargonium were the main anthocyanidin types in ferns. Among them, Blechnaceae ferns were rich in cyanidin and Dryopteridaceae ferns were rich in delphinidin. Most ferns contained proanthocyanidins. The average content of proanthocyanidins in Polypodiales ferns was significantly higher than that in the other fern orders. Thus, the distribution of flavonoids such as anthocyanidins and procyanidins in ferns appears to be related to plant classification. It is speculated that anthocyanidins are related to growth, development, and stress resistance in ferns.
-
Keywords:
- Ferns /
- Anthocyanidins /
- Proanthocyanidins /
- HPLC
-
-
[1] Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R. Analysis and biological activities of anthocyanins[J]. Phytochemistry, 2003, 64(5):923-933.
[2] Smeriglio A, Barreca D, Bellocco E, Trombetta D. Che-mistry, pharmacology and health benefits of anthocyanins[J]. Phytother Res, 2016, 30(8):1265-1286.
[3] Mazza G, Miniati E. Anthocyanins in Fruits, Vegetables, and Grains[M]. Florida:CRC Press, 1993.
[4] Silva S, Costa EM, Calhau C, Morais RM, Pintado ME. Anthocyanin extraction from plant tissues:a review[J]. Crit Rev Food Sci, 2017, 57(14):3072-3083.
[5] Putta S, Yarla NS, Kumar EK, Lakkappa DB, Kamal MA, et al. Preventive and therapeutic potentials of anthocyanins in diabetes and associated complications[J]. Curr Med Chem, 2018, 25(39):5347-5371.
[6] Nakashima S, Oda C, Masuda S, Tagashira M, Kanda T. Isolation and structure elucidation of tetrameric procyanidins from unripe apples (Malus pumila cv. Fuji) by NMR spectroscopy[J]. Phytochemistry, 2012, 83:144-152.
[7] Prior RL, Gu L. Occurrence and biological significance of proanthocyanidins in the American diet[J]. Phytochemistry, 2005, 66(18):2264-2280.
[8] Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids:biosynthesis, biological functions, and biotechnological applications[J]. Front Plant Sci, 2012, 3:222.
[9] Dai LP, Xiong ZT, Huang Y, Li MJ. Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata[J]. Environ Toxicol, 2006, 21(5):505-512.
[10] Al-Hamdani SH, Sirna CB. Physiological responses of Salvinia minima to different phosphorus and nitrogen concentrations[J]. Am Fern J, 2008, 98(2):71-82.
[11] Chai TT, Panirchellvum E, Ong HC, Wong FC. Phenolic contents and antioxidant properties of Stenochlaena palustris, an edible medicinal fern[J]. Bot Stud, 2012, 53(4):439-446.
[12] Lee DW, Collins TM. Phylogenetic and ontogenetic influences on the distribution of anthocyanins and betacyanins in leaves of tropical plants[J]. Int J Plant Sci, 2001, 162(5):1141-1153.
[13] Chang HC, Huang GJ, Agrawal DC, Kuo CL, Wu CR, et al. Antioxidant activities and polyphenol contents of six folk medicinal ferns used as "Gusuibu"[J]. Bot Stud, 2007, 48(4):397-406.
[14] Chai TT, Elamparuthi S, Yong AL, Quah Y, Ong HC, et al. Antibacterial, anti-glucosidase, and antioxidant activities of selected highland ferns of Malaysia[J]. Bot Stud, 2013, 54(1):55.
[15] Chai TT, Yeoh LY, Ismail NIM, Ong HC,Manan FA et al. Evaluation of glucosidase inhibitory and cytotoxic potential of five selected edible and medicinal ferns[J]. Trop J Pharm Res, 2015, 14(3):449-454.
[16] 肖宜安,何平,李晓红,时明芝,胡文海. 井冈山自然保护区蕨类植物资源[J]. 植物研究,2004, 24(1):35-40. Xiao YA, He P, Li XH, Shi MZ, Hu WH. Studied on the pteridophytes resources in Jinggangshan Nature Reserve[J]. Bulletin of Botanical Research, 2004, 24(1):35-40.
[17] Schuettpelz E, Schneider H, Smith AR, Hovenkamp P, Prado J, et al. A community-derived classification for extant lycophytes and ferns[J]. J Syst Evol, 2016, 54(6):563-603.
[18] Wang X, Wang M, Cao J, Wu YH, Xiao JB, et al. Analysis of flavonoids and antioxidants in extracts of ferns from Tianmu Mountain in Zhejiang Province (China)[J]. Ind Crop Prod, 2017, 97:137-145.
[19] Hoballah ME, Gubitz T, Stuurman J, Broger L, Barone M, et al. Single gene-mediated shift in pollinator attraction in Petunia[J]. Plant Cell, 2007, 19(3):779-790.
[20] Field TS, Lee DW, Holbrook NM. Why leaves turn red in autumn, the role of anthocyanins in senescing leaves of red-osier dogwood[J]. Plant Physiol, 2001, 127(2):566-574.
[21] Neill SO, Gould KS, Kilmartin PA, Mitchell KA, Markham KR. Antioxidant activities of red versus green leaves in Elatostema rugosum[J]. Plant Cell Environ, 2002, 25(4):539-547.
[22] Oberbaueri SF, Starr G. The role of anthocyanins for photosynthesis of Alaskan arctic evergreens during snowmelt[J]. Adv Bot Res, 2002, 37(2):129-145.
[23] Chung SW, Yu DJ, Lee HJ. Changes in anthocyanidin and anthocyanin pigments in highbush blueberry (Vaccinium corymbosum cv. Bluecrop)fruits during ripening[J]. Hortic Environ Biote, 2016, 57(5):424-430.
[24] Kim DE, Shang XM, Assefa AD, Keum YS, Saini RK. Metabolite profiling of green, green/red, and red lettuce cultivars:variation in health beneficial compounds and antioxidant potential[J]. Food Res Int, 2018, 105:361-370.
[25] Zhang Z, Kou X, Fugal K, McLaughlin J. Comparison of HPLC methods for determination of anthocyanins and anthocyanidins in bilberry extracts[J]. J Agr Food Chem, 2004, 52(4):688-691.
[26] Maier A, Hoecker U. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions[J]. Plant Signal Behav, 2015, 10(1):e970440.
[27] Mazzucato A, Willems D, Bernini R, Picarella ME, Santangelo E, et al. Novel phenotypes related to the breeding of purple-fruited tomatoes and effect of peel extracts on human cancer cell proliferation[J]. Plant Physiol Bioch, 2013, 72:125-133.
[28] Guo N, Cheng F, Wu J, Liu B, Zheng S, et al. Anthocyanin biosynthetic genes in Brassica rapa[J]. BMC Geno-mics, 2014, 15(1):426.
[29] 张惠源, 张志英. 中国中药资源志要[M]. 北京:科学出版社, 1994. [30] 国家药典委员会. 中华人民共和国药典:2010年版[M]. 北京:中国医药科技出版社, 2010. [31] Katsu K, Suzuki R, Tsuchiya W, Inagaki N, Yamazaki T, et al. A new buckwheat dihydroflavonol 4-reductase (DFR), with a unique substrate binding structure, has altered substrate specificity[J]. BMC Plant Biol, 2017, 17(1):239-239.
-
期刊类型引用(7)
1. 林泓,王桢,王艇,苏应娟. 黑桫椤多器官全长转录组分析及类黄酮生物合成结构基因的挖掘. 植物科学学报. 2024(01): 56-65 . 本站查看
2. 王凤攀,仲昭暄,陈利君,舒江平,严岳鸿. 广义蕨类植物基因功能研究概述. 植物学报. 2024(03): 495-514 . 百度学术
3. 钟帅,肖友萍,梁耀星,黄凯祥,郭俊杰,蔡一霞,何经纬,冯玉龙,金保锋,王维. 类黄酮和类胡萝卜素代谢物的变化特征及其与褪色的关系. 烟草科技. 2024(05): 23-34 . 百度学术
4. 王敬,孟珂,陈璇,章家恩,向慧敏,钟嘉文,石兆基. 酸雨对生菜和上海青的产量、品质及生理特性的影响. 生态环境学报. 2023(06): 1098-1107 . 百度学术
5. 宗亚倩,全伟,李建平,何承刚,姜华. 红茎与绿茎紫花苜蓿色素及缩合单宁含量的比较分析. 云南农业大学学报(自然科学). 2023(06): 1067-1072 . 百度学术
6. 谢志和,刘雨婷,张祥,李平平,邓明华. 紫椒和白皮椒花青素及葡萄糖含量的变异规律研究. 湖南生态科学学报. 2021(02): 17-24 . 百度学术
7. 陈微,惠林冲,李威亚,潘美红,郇国磊,何林玉,缪美华,杨海峰. 洋葱花青苷合成相关基因表达与不同层鳞片颜色的关系. 江苏农业科学. 2021(21): 54-57 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 770
- HTML全文浏览量: 16
- PDF下载量: 652
- 被引次数: 10