Study on the adaptive mechanisms of five plants to high-altitude light based on transcriptome sequencing in Maidica wetland of Tibet
-
摘要: 基于转录组测序技术对杉叶藻(Hippuris vulgaris L.)、云南黄芪(Astragalus yunnanensis Franch.)、甘肃马先蒿(Pedicularis kansuensis Maxim.)、马先蒿(P. ikomai Sasaki.)以及穗花马先蒿(P. spicata Pall.)5种麦地卡湿地常见植物的转录组数据进行分析,比较筛选影响麦地卡湿地植物光合作用的通路及基因,探讨高原植物在光合作用方面的适应性机制。结果显示,通过搜索GO和KEGG基因数据库,发现大多数基因被注释到细胞过程,且主要在代谢过程。在基因的GO富集分析结果中发现,较多基因富集在光系统Ⅰ、天线系统、光系统Ⅱ和光合作用;而KEGG富集分析结果表明,5种植物中大多数基因均显著富集在光合作用、光合作用-天线蛋白、卟啉和叶绿素代谢以及氧化磷酸化通路。推测麦地卡湿地植物可能通过卟啉和叶绿素代谢、氧化磷酸化等生物途径来抵御强光对自身照射的伤害,维持正常的生理活动。证明在高原极端环境条件影响下,麦地卡湿地生存的植物在光合作用中产生了适应性策略。Abstract: Based on transcriptome sequencing technology, we analyzed the transcriptome data of five common plants from the Maidica wetland of Tibet, including Hippuris vulgaris L., Astragalus yunnanensis Franch., Pedicularis kansuensis Maxim., P. ikomai Sasaki., and P. spicata Pall. The pathways and genes affecting photosynthesis of plants in the Maidica wetland were compared and screened to explore the adaptive mechanisms of plateau plants regarding photosynthesis. Based on searching the Gene Ontology (GO) and Kyoto Encyclopedia for Genes and Genomes (KEGG) databases, most genes were annotated into cellular processes, especially metabolic processes. GO enrichment analysis of genes showed that more genes were enriched in photosystemⅠ, antenna system, photosystemⅡ, and photosynthesis; KEGG enrichment analysis showed that most genes in the five plants were significantly enriched in pathways related to photosynthesis, photosynthesis-antenna protein, porphyrin and chlorophyll metabolism, and oxidative phosphorylation. It is speculated that plants in the Maidica wetland may resist damage from strong light and maintain normal physiological activities through porphyrin and chlorophyll metabolism, oxidative phosphorylation, and other biological pathways. These results indicate that under the influence of extreme environmental plateaus conditions, Maidica wetland plants use various adaptive strategies in photosynthesis.
-
-
[1] Qiao Q,Wang Q,Han X,Guan Y,Sun H,et al. Transcriptome sequencing of Crucihimalaya himalaica(Brassicaceae)reveals how Arabidopsis close relative adapt to the Qinghai-Tibet Plateau[J]. Sci Rep,2016,6:21729.
[2] Yoshikazu O,Akio F. Photoinhibition of elongation growth of roots in rice seedlings[J]. Plant Cell Physiol,1967,1:141-150.
[3] Wang S,Guo L,He B,Lyu Y,Li T. The stability of Qinghai-Tibet Plateau ecosystem to climate change[J]. Phys Chem Earth,2020,115:102827.
[4] Zhang T,Qiao Q,Novikova PY,Wang Q,Qiong L. Genome of Crucihimalaya himalaica,a close relative of Arabidopsis,shows ecological adaptation to high altitude[J].Proc Natl Acad Sci,2019,116(14):7137-7146.
[5] 拦继酒,罗建.西藏麦地卡湿地自然保护区种子植物资源多样性[J].高原农业,2018,2(1):7. Lan JJ,Luo J. Diversity of seed plant resources in Maidica wetland natural reserve in Tibet[J]. Journal of Plateau Agriculture,2018,2(1):7.
[6] 于萍萍.西藏麦地卡湿地环境保护现状及其对策[J].农技服务,2016,33(1):198. [7] Gelsor N,Gelsor N,Wangmo T,Chen YC,Frette O,et al. Solar energy on the Tibetan Plateau:atmospheric influences[J]. Sol Energy,2018,173(10):984-992.
[8] 徐宗学,巩同梁,赵芳芳.近40年来西藏高原气候变化特征分析[J].亚热带资源与环境学报,2006,1(3):24-32. Xu ZX,Gong TL,Zhao FF. Analysis of climate change in Tibetan Plateau over the past 40 years[J]. Journal of Subtropical Resources and Environment,2006,1(3):24-32.
[9] 刘志民,杨甲定.青藏高原几个主要环境因子对植物的生理效应[J].中国沙漠,2000,20(3):309-313. Liu ZM,Yang JD. Effects of several environmental factors on plant physiology in Qinghai-Xizang Plateau[J]. Journal of Desert Research,2000,20(3):309-313.
[10] Cui XY,Gu S,Wu J,Tang YH. Photosynthetic response to dynamic changes of light and air humidity in two moss species from the Tibetan Plateau[J]. Ecol Res,2009,24(3):645-653.
[11] Khuong T. Investigation of the regulation of photosynthesis at the molecular level for improvement of plant growth and productivity under limiting light conditions[D]. Aix:Marseille University,2013.
[12] Kurilik A, Mikluyt-Anova R, Dapkūnien S, Ilinskait S,Ukauskas A. In vitro cultivation of Chrysantthemum plantlets using light-emitting diodes[J]. Cent Eur J Biol,2008,3(2):161.
[13] Kim H. Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes[J]. Hortscience,2004,39(7):1617.
[14] Hélène G,Claude VG,Nathalie B. Effects of blue light on the vertical colonization of space by white clover and their consequences for dry matter distribution[J]. Ann Bot,1997,80(5):665-671.
[15] Sun H,Niu Y,Chen YS,Song B,Liu CQ,et al. Survival and reproduction of plant species in the Qinghai-Tibet Plateau[J]. J Syst Evol,2014,52(3):378-396.
[16] 韩发,贲桂英,师生波.青藏高原不同海拔矮蒿草抗逆性的比较研究[J].生态学报,1998,18(6):654-659. Han F,Ben GY,Shi SB. Comparative study on the resistance of Kobresia humilis grown at different altitudes in Qinghai-Xizang Plateau[J]. Acta Ecologica Sinica,1998,18(6):654-659.
[17] Wei J,Yu H,Zhong ZP,Kuang TY,Ben GY. Comparison of photosynthetic adaptability between Kobresia humilis and Polygonum viviparum on Qinghai Plateau[J]. Acta Botanica Sinica,2001,43(5):486-489.
[18] 师生波,李惠梅,王学英,岳向国,徐文华,陈桂琛.青藏高原几种典型高山植物的光合特性比较[J].植物生态学报,2006,30(1):40-46. Shi SB,Li HM,Wang XY,Yu XG,Xu WH,Chen GC.Comparative studies of photosynthetic characteristics in typical alpine plants of the Qinghai-Tibet Plateau[J]. Chinese Journal of Plant Ecology,2006,30(1):40-46.
[19] Streb P,Josse EM,Gallou3t E,Baptist F,Kuntz M,Cornic G. Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain plant species Ranunculus glacialis[J]. Plant Cell Environ,2010,28(9):1123-1135.
[20] Grabherr MG,Haas BJ,Yassour M,Levin JZ,Thomposon DA,et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol,2011,29(7):644-652.
[21] Ogata H,Goto S,Sato K,Fujibuchi W,Kanehisa M.KEGG:kyoto encyclopedia of genes and genomes[J].Nucleic Acids Res,1999,27(1):29-34.
[22] Cheviron ZA,Brumfield RT. Genomic insights into adaptation to high-altitude environments[J]. Heredity,2012,108(4):354-361.
[23] 刘天猛.青藏高原植物适应性进化和精油资源利用探究[D].拉萨:西藏大学,2018. [24] 李妍妍,王景升,税燕萍,陈歆,郑国强,等.拉萨河源头麦地卡湿地景观格局及功能动态分析[J].生态学报,2018,38(24):8700-8707. Li YY,Wang JS,Shui YP,Chen X,Zheng GQ,et al.Analysis of landscape pattern and ecological service function of the Madica Wetland Reserve[J]. Acta Ecologica Sinica,2018,38(24):8700-8707.
[25] Drop B,Webber-Birungi M,Yadav S,Filipowicz-Szymanska A,Fusetti F,et al. Light-harvesting complexⅡ(LHCⅡ)and its supramolecular organization in Chlamydomonas reinhardtii[J]. BBA-Bioenergetics,2014,1837(1):63-72.
[26] Huang GT,Ma SL,Bai LP,Zhang L,Ma H,et al. Signal transduction during cold,salt,and drought stresses in plants[J]. Mol Biol Rep,2012,39(2):969-987.
[27] Krasensky J,Jonak C. Drought,salt,and temperature stress-induced metabolic rearrangements and regulatory networks[J]. J Exp Bot,2012,63(4):1593.
[28] Chrispeels MJ,Holuigue L,Latorre R,Luan S,Trewavas A. Signal transduction networks and the biology of plant cells[J]. Biol Res,1999,32(1):35-60.
[29] Shimotohno A,Aki SS,Takahashi N,Umeda M. Regulation of the plant cell cycle in response to hormones and the environment[J]. Annu Rev Plant Biol,2021,72(1):273-296.
[30] Meunier C. Energy from photobioreactors:Bioencapsulation of photosynthetically active molecules, organelles,and whole cells within biologically inert matrices[J]. Pure Appl Chem,2008,80(11):2345-2376.
[31] Iwasaki Y,Komano M,Takabe T. Molecular cloning of cDNA for a 17. 5-kDa polypeptide,the psaL gene product,associated with cucumber photosystemⅠ[J]. Biosci Biotech Bioch,2014,59(9):1758-1760.
[32] Ruban AV,Berera R,Ilioaia C,Stokkum IHMV,Kennis JTM,et al. Identification of a mechanism of photoprotective energy dissipation in higher plants[J]. Nature,2007,450(7169):575-578.
[33] Neuberger A. The regulation of chlorophyll and porphyrin biosynthesis[J]. Int J Biochem,1980,12(5-6):787-789.
[34] Hu G,Yalpani N,Briggs SP,Johal GS. A Porphyrin pathway impairment is responsible for the phenotype of a dominant disease Lesion Mimic Mutant of Maize[J]. Plant Cell,1998,10(7):1095-1105.
[35] Liska AJ. Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics[J]. Plant Physiol,2004,136(1):2806-2817.
[36] Baris TZ,Blier PU,Pichaud N,Crawford DL,Oleksiak MF. Gene by environmental interactions affecting oxidative phosphorylation and thermal sensitivity[J]. Am J PhysiolReg I,2016,311(1):157-165.
[37] Chitnis VP,Chitnis PR. PsaL subunit is required for the formation of photosystemⅠtrimers in the cyanobacterium Synechocystis sp. PCC 6803[J]. Febs Lett,1993,336(2):330-334.
[38] Jensen PE,Haldrup A,Zhang S,Scheller HV. The PSI-O subunit of plant photosystemⅠis involved in balancing the excitation pressure between the two photosystems[J].J Biol Chem,2004,279(23):24212-24217.
[39] Kato K,Nagao R,Jiang TY,Ueno Y,Akita F. Structure of a cyanobacterial photosystemⅠtetramer revealed by cryo-electron microscopy[J]. Nat Commun,2019,10(1):4929.
[40] Horton P,Ruban AV,Walters RG. Regulation of light harvesting in green plants[J]. Annu Rev Plant Phys,1996,47(1):655-684.
[41] Demmig-Adams B,AdamsIII WW,Mattoo AK. Photoprotection,photoinhibition,gene regulation,and environment[M]//Govindjee,ed. Advances in Photosynthesis and Respiration:Vol 21. Dordrecht:Springer,2006.
[42] Yang Y,Zhou Z,Li Y,Lv Y,Yang D,et al. Uncovering the role of a positive selection site of wax ester synthase/diacylglycerol acyltransferase in two closely related Stipa species in wax ester synthesis under drought stress[J]. J Exp Bot,2020,71(14):4159-4170.
[43] Ma L,Sun X,Kong X,Galvan JV,Li X,et al. Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau[J]. J Proteomics,2015,112:63-82.
-
期刊类型引用(4)
1. 苗永美,高亚杰,顾东悦,黄昌齐,贾利. 光质对细叶石仙桃组培苗生长、生理和次生代谢的影响及转录组分析. 植物资源与环境学报. 2025(01): 21-32 . 百度学术
2. 陈灵灵,杨家鑫,江慧,廖苗,蔡秀珍,胡光万. 马先蒿属一中国新记录种——陈塘马先蒿. 植物科学学报. 2024(02): 135-139 . 本站查看
3. 欧阳露,巴桑,拉多,刘小艳,刘贵华,刘文治,丁帮璟. 西藏高原湿地植物和土壤细菌多样性及其影响因素分析. 植物科学学报. 2023(01): 44-52 . 本站查看
4. 汪莹,郑明歧,罗布顿珠,韩献华,张有军,石娟. 青杨天牛幼虫响应低氧胁迫的转录组分析. 植物保护学报. 2023(06): 1600-1609 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 349
- HTML全文浏览量: 3
- PDF下载量: 304
- 被引次数: 6