高级检索+

植物小开放阅读框编码肽的研究进展

陈燕君, 王坤

陈燕君, 王坤. 植物小开放阅读框编码肽的研究进展[J]. 植物科学学报, 2020, 38(5): 707-715. DOI: 10.11913/PSJ.2095-0837.2020.50707
引用本文: 陈燕君, 王坤. 植物小开放阅读框编码肽的研究进展[J]. 植物科学学报, 2020, 38(5): 707-715. DOI: 10.11913/PSJ.2095-0837.2020.50707
Chen Yan-Jun, Wang Kun. Advances in studies on small open reading frames in plants[J]. Plant Science Journal, 2020, 38(5): 707-715. DOI: 10.11913/PSJ.2095-0837.2020.50707
Citation: Chen Yan-Jun, Wang Kun. Advances in studies on small open reading frames in plants[J]. Plant Science Journal, 2020, 38(5): 707-715. DOI: 10.11913/PSJ.2095-0837.2020.50707
陈燕君, 王坤. 植物小开放阅读框编码肽的研究进展[J]. 植物科学学报, 2020, 38(5): 707-715. CSTR: 32231.14.PSJ.2095-0837.2020.50707
引用本文: 陈燕君, 王坤. 植物小开放阅读框编码肽的研究进展[J]. 植物科学学报, 2020, 38(5): 707-715. CSTR: 32231.14.PSJ.2095-0837.2020.50707
Chen Yan-Jun, Wang Kun. Advances in studies on small open reading frames in plants[J]. Plant Science Journal, 2020, 38(5): 707-715. CSTR: 32231.14.PSJ.2095-0837.2020.50707
Citation: Chen Yan-Jun, Wang Kun. Advances in studies on small open reading frames in plants[J]. Plant Science Journal, 2020, 38(5): 707-715. CSTR: 32231.14.PSJ.2095-0837.2020.50707

植物小开放阅读框编码肽的研究进展

基金项目: 

中央高校基本科研业务费专项(2042018kf0225)。

详细信息
    作者简介:

    陈燕君(1995-),女,硕士研究生,研究方向为植物发育生物学(E-mail:chenyj@whu.edu.cn)。

    通讯作者:

    王坤,E-mail:wangk05@whu.edu.cn

  • 中图分类号: Q943.2

Advances in studies on small open reading frames in plants

Funds: 

This work was supported by a grant from the Fundamental Research Funds for the Central Universities (2042018kf0225).

  • 摘要: 小开放阅读框(small open reading frame,sORF)一般指基因组中能够编码长度在100个氨基酸左右或以内短肽的开放阅读框。它们广泛存在于植物基因组,却因编码短肽而常被基因组注释忽视。随着翻译组学和蛋白质组学测序技术的发展,具有翻译活性的sORF被证实广泛存在于植物基因组,且参与植物生长发育等重要过程的调控。该文归纳了近些年来植物领域sORF的一些研究进展,主要包括sORF的来源与分类、信息学预测方法和生物学功能等,并基于此对植物sORF未来的研究方向进行了展望。
    Abstract: Small open reading frames (sORFs) can encode small peptides with lengths of about 100 amino acids or less. They exist in plant genomes but are often excluded from genome annotations. With the development of translatomics and proteomics, accumulating evidence suggests that sORFs are widely present in plant genomes and are involved in the regulation of plant growth and development. This review summarizes recent progress in sORF studies in plants, including biogenesis and classification, bioinformatic prediction methods, and biological functions, and provides a prospective outlook for future research directions.
  • [1]

    Ji Z, Song R, Regev A, Struhl K. Many lncRNAs, 5'UTRs, and pseudogenes are translated and some are likely to express functional proteins[J]. eLife, 2015, 4:e08890.

    [2]

    Raney A, Baron AC, Mize GJ, Law GL, Morris DR. In vitro translation of the upstream open reading frame in the mammalian mRNA encoding S-adenosylmethionine decarboxylase[J]. J Biol Chem, 2000, 275(32):24444-24450.

    [3]

    Couso JP, Patraquim P. Classification and function of small open reading frames[J]. Nat Rev Mol Cell Biol, 2017, 18(9):575-589.

    [4]

    Hsu PY, Benfey PN. Small but mighty:functional peptides encoded by small ORFs in plants[J]. Proteomics, 2018, 18(10):1700038.

    [5]

    Ge Z, Bergonci T, Zhao Y, Zou Y, Du S, et al. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling[J]. Science, 2017, 358(6370):1596-1600.

    [6]

    Zhong S, Liu M, Wang Z, Huang Q, Hou S, et al. Cys-teine-rich peptides promote interspecific genetic isolation in Arabidopsis[J]. Science, 2019, 364(6443):1-8.

    [7]

    Lei L, Shi J, Chen J, Zhang M, Sun S, et al. Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress[J]. Plant J, 2015, 84(6):1206-1218.

    [8]

    Xu G, Yuan M, Ai C, Liu L, Zhuang E, et al. uORF-mediated translation allows engineered plant disease resistance without fitness costs[J]. Nature, 2017, 545(7655):491-494.

    [9]

    Delay C, Imin N, Djordjevic MA. Regulation of Arabidopsis root development by small signaling peptides[J]. Front Plant Sci, 2013, 4(4):352-357.

    [10]

    Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, et al. A small peptide modulates stomatal control via abscisic acid in long-distance signalling[J]. Nature, 2018, 556(7700):235-241.

    [11]

    Chugunova A, Navalayeu T, Dontsova O, Sergiev P. Mining for Small Translated ORFs[J]. J Proteome Res, 2018, 17(1):1-11.

    [12]

    Zhang S, Gao J, Liu C. The role of non-coding RNAs in neurodevelopmental disorders[J]. Front Genet, 2019, 10(10):1033-1042.

    [13]

    Marquardt S, Raitskin O, Wu Z, Liu F, Sun Q, Dean C. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription[J]. Mol Cell, 2014, 54(1):156-165.

    [14]

    Wang Y, Luo X, Sun F, Hu J, Zha X, et al. Overexpres-sing lncRNA LAIR increases grain yield and regulates neighbouring gene cluster expression in rice[J]. Nat Commun, 2018, 9(1):3516-3524.

    [15]

    Cui J, Luan Y, Jiang N, Bao H, Meng J. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin[J]. Plant J, 2017, 89(3):577-589.

    [16]

    Ruiz-Orera J, Messeguer X, Subirana JA, Alba MM. Long non-coding RNAs as a source of new peptides[J]. eLife, 2014, 3:e03523.

    [17]

    Lin X, Lin W, Ku YS, Wong FL, Li MW, et al. Analysis of soybean long non-coding RNAs reveals a subset of small peptide-coding transcripts[J]. Plant Physiol, 2020, 182(3):1359-1374.

    [18]

    Levine MT, Jones CD, Kern AD, Lindfors HA, Begun DJ. Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression[J]. Proc Natl Acad Sci, 2006, 103(26):9935-9939.

    [19]

    Juntawong P, Girke T, Bazin J, Bailey-Serres J. Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis[J]. Proc Natl Acad Sci, 2014, 111(1):203-212.

    [20]

    Fesenko I, Kirov I, Kniazev A, Khazigaleeva R, Lazarev V, et al. Distinct types of short open reading frames are translated in plant cells[J]. Genome Res, 2019, 29(9):1464-1477.

    [21]

    Zhang YC, Liao JY, Li ZY, Yu Y, Zhang JP, et al. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice[J]. Genome Biol, 2014, 15(12):512-528.

    [22]

    Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation[J]. Nature Plants, 2017, 3(5):1-5.

    [23]

    Zhang M, Huang N, Yang X, Luo J, Yan S, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis[J]. Oncogene, 2018, 37(13):1805-1814.

    [24]

    Zhang M, Zhao K, Xu X, Yang Y, Yan S, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma[J]. Nat Commun, 2018, 9(1):1-17.

    [25]

    Lee Y, Kim M, Han J, Yeom KH, Lee S, et al. MicroRNA genes are transcribed by RNA polymeraseⅡ[J]. EMBO J, 2004, 23(20):4051-4060.

    [26]

    Cui C, Wang JJ, Zhao JH, Fang YY, He XF, et al. A Brassica miRNA regulates plant growth and immunity through distinct modes of action[J]. Mol Plant, 2020, 13(2):231-245.

    [27]

    Yu Y, Jia T, Chen X. The ‘how’ and ‘where’ of plant microRNAs[J]. New Phytol, 2017, 216(4):1002-1017.

    [28]

    Tang J, Chu C. MicroRNAs in crop improvement:Fine-tuners for complex traits[J]. Nature Plants, 2017, 3(7):1-11.

    [29]

    Lauressergues D, Couzigou JM, San Clemente H, Marti-nez Y, Dunand C, et al. Primary transcripts of microRNAs encode regulatory peptides[J]. Nature, 2015, 520(7545):90-93.

    [30]

    Iacono M, Mignone F, Pesole G. uAUG and uORFs in human and rodent 5'untranslated mRNAs[J]. Gene, 2005, 349(11):97-105.

    [31]

    Calvo SE, Pagliarini DJ, Mootha VK. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans[J]. Proc Natl Acad Sci, 2009, 106(18):7507-7512.

    [32]

    Bazzini AA, Johnstone TG, Christiano R, Mackowiak SD, Obermayer B, et al. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation[J]. EMBO J, 2014, 33(9):981-993.

    [33]

    Weaver J, Mohammad F, Buskirk AR, Storz G. Identifying small proteins by ribosome profiling with stalled initiation complexes[J]. MBio, 2019, 10(2):e02819-18.

    [34]

    Wu HYL, Song GY, Walley JW, Hsu PYS. The tomato translational landscape revealed by transcriptome assembly and ribosome profiling[J]. Plant Physiol, 2019, 181(1):367-380.

    [35]

    Hazarika RR, De Coninck B, Yamamoto LR, Martin LR, Cammue BPA, van Noort V. ARA-PEPs:A repository of putative SORF-encoded peptides in Arabidopsis thaliana[J]. BMC Bioinformatics, 2017, 18(1):37.

    [36]

    Kurihara Y, Makita Y, Kawashima M, Fujita T, Iwasaki S, Matsui M. Transcripts from downstream alternative transcription start sites evade uORF-mediated inhibition of gene expression in Arabidopsis[J]. Proc Natl Acad Sci, 2018, 115(30):7831-7836.

    [37]

    Xu G, Greene GH, Yoo H, Liu L, Marqués J, et al. Global translational reprogramming is a fundamental layer of immune regulation in plants[J]. Nature, 2017, 545(7655):487-490.

    [38]

    Hanada K, Zhang X, Borevitz JO, Li WH, Shiu SH. A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection[J]. Genome Res, 2007, 17(5):632-640.

    [39]

    Rice P, Longden I, Bleasby A. EMBOSS:the european molecular biology open software suite[J]. Trends Genet, 2000, 16(6):276-277.

    [40]

    Skarshewski A, Stanton-Cook M, Huber T, Al Mansoori S, Smith R, et al. UPEPperoni:An online tool for upstream open reading frame location and analysis of transcript conservation[J]. BMC Bioinformatics, 2014, 15(1):36-42.

    [41]

    Wang J, Gribskov M. IRESpy:An XGBoost model for prediction of internal ribosome entry sites[J]. BMC Bioinformatics, 2019, 20(1):409-422.

    [42]

    Zhao J, Wu J, Xu T, Yang Q, He J, Song X. IRESfinder:identifying RNA internal ribosome entry site in eukaryotic cell using framed k-mer features[J]. Journal of Genetics and Genomics, 2018, 45(7):403-406.

    [43]

    Wu TY, Hsieh CC, Hong JJ, Chen CY, Tsai YS. IRSS:A web-based tool for automatic layout and analysis of IRES secondary structure prediction and searching system in silico[J]. BMC Bioinformatics, 2009, 10(1):160-173.

    [44]

    Hong JJ, Wu TY, Chang TY, Chen CY. Viral IRES prediction system-a web server for prediction of the IRES secondary structure in silico[J]. PLoS One, 2013, 8(11):e79288.

    [45]

    Kolekar P, Pataskar A, Kulkarni-Kale U, Pal J, Kulkarni A. IRESPred:web server for prediction of cellular and viral internal ribosome entry site (IRES)[J]. Sci Rep, 2016, 6(1):1-7.

    [46]

    Zhu MM, Gribskov M. MiPepid:MicroPeptide identification tool using machine learning[J]. BMC Bioinformatics, 2019, 20:559.

    [47]

    Malone B, Atanassov I, Aeschimann F, Li X, Großhans H, Dieterich C. Bayesian prediction of RNA translation from ribosome profiling[J]. Nucleic Acids Res, 2017, 45(6):2960-2972.

    [48]

    Xiao Z, Huang R, Xing X, Chen Y, Deng H, Yang X. De novo annotation and characterization of the translatome with ribosome profiling data[J]. Nucleic Acids Res, 2018, 46(10):e61.

    [49]

    Erhard F, Halenius A, Zimmermann C, L'Hernault A, Kowalewski DJ, et al. Improved Ribo-seq enables identification of cryptic translation events[J]. Nat Methods, 2018, 15(5):363-366.

    [50]

    Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification[J]. Nat Biotechnol, 2008, 26(12):1367-1372.

    [51]

    Vaudel M, Barsnes H, Berven FS, Sickmann A, Martens L. SearchGUI:An open-source graphical user interface for simultaneous OMSSA andX!Tandem searches[J]. Proteomics, 2011, 11(5):996-999.

    [52]

    Spealman P, Naik AW, May GE, Kuersten S, Freeberg L, et al. Conserved non-AUG uORFs revealed by a novel regression analysis of ribosome profiling data[J]. Genome Res, 2018, 28(2):214-222.

    [53]

    Jorgensen RA, Dorantes-Acosta AE. Conserved peptide upstream open reading frames are associated with regulatory genes in angiosperms[J]. Front Plant Sci, 2012, 3(191):191-202.

    [54]

    Hsu PY, Calviello L, Wu HYL, Li FW, Rothfels CJ, et al. Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis[J]. Proc Natl Acad Sci, 2016, 113(45):7126-7135.

    [55]

    Tran MK, Schultz CJ, Baumann U. Conserved upstream open reading frames in higher plants[J]. BMC Genomics, 2008, 9(9):361-378.

    [56]

    Hao Y, Zhang L, Niu Y, Cai T, Luo J, et al. SmProt:a database of small proteins encoded by annotated coding and non-coding RNA loci[J]. Brief Bioinform, 2018, 19(4):636-643.

    [57]

    Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-wide analysis in vivo of translation with nuc-leotide resolution using ribosome profiling[J]. Science, 2009, 324(5924):218-223.

    [58]

    Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES. Ribosome profiling provides evidence that large non-coding RNAs do not encode proteins[J]. Cell, 2014, 154(1):240-251.

    [59]

    Zhang B, Wang J, Wang X, Zhu J, Liu Q, et al. Proteo-genomic characterization of human colon and rectal cancer[J]. Nature, 2014, 513(7518):382-387.

    [60]

    Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, et al. A draft map of the human proteome[J]. Nature, 2014, 509(7502):575-581.

    [61]

    Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-hoffmann M, et al. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics[J]. Science, 2008, 320(5878):938-941.

    [62]

    Budamgunta H, Olexiouk V, Luyten W, Schildermans K, Maes E, et al. Comprehensive peptide analysis of mouse brain striatum identifies novel sORF-encoded polypeptides[J]. Proteomics, 2018, 18(10):1700218-1700234.

    [63]

    Khitun A, Slavoff SA. Proteomic detection and validation of translated small open reading frames[J]. Curr Protoc Chem Biol, 2019, 11(4):77-104.

    [64]

    Röhrig H, Schmidt J, Miklashevichs E, Schell J, John M. Soybean ENOD40 encodes two peptides that bind to sucrose synthase[J]. Proc Natl Acad Sci, 2002, 99(4):1915-1920.

    [65]

    Dong X, Wang D, Liu P, Li C, Zhao Q, et al. Zm908p11, encoded by a short open reading frame (sORF) gene, functions in pollen tube growth as a profilin ligand in maize[J]. J Exp Bot, 2013, 64(8):2359-2372.

    [66]

    Wang D, Li C, Zhao Q, Zhao L, Wang M, et al. Zm401p10, encoded by an anther-specific gene with short open reading frames, is essential for tapetum degeneration and anther development in maize[J]. Funct Plant Biol, 2009, 36(1):73-85.

    [67]

    Saul H, Elharrar E, Gaash R, Eliaz D, Valenci M, et al. The upstream open reading frame of the Arabidopsis AtMHX gene has a strong impact on transcript accumulation through the nonsense-mediated mRNA decay pathway[J]. Plant J, 2009, 60(6):1031-1042.

    [68]

    Alatorre-Cobos F, Cruz-Ramírez A, Hayden CA, Pérez-Torres CA, Chauvin AL, et al. Translational regulation of Arabidopsis XIPOTL1 is modulated by phosphocholine levels via the phylogenetically conserved upstream open reading frame 30[J]. J Exp Bot, 2012, 63(14):5203-5221.

    [69]

    Rahmani F, Hummel M, Schuurmans J, Wiese-Klinkenberg A, Smeekens S, Hanson J. Sucrose control of translation mediated by an upstream open reading frame-encoded peptide[J]. Plant Physiol, 2009, 150(3):1356-1367.

    [70]

    Si X, Zhang H, Wang Y, Chen K, Gao C. Manipulating gene translation in plants by CRISPR-Cas9-mediated genome editing of upstream open reading frames[J]. Nat Protoc, 2020, 15(2):338-363.

    [71]

    Zhong S, Liu M, Wang Z, Huang Q, Hou S, X et al. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis[J]. Science, 2019, 364(6443):9564-9571.

  • 期刊类型引用(12)

    1. 赵锐明,回嵘. 我国不同气候带优势高山垫状植物的小尺度点格局研究. 生态科学. 2023(02): 145-154 . 百度学术
    2. 王皓,梁钰,周利杰,王斌,魏来. 极小种群黄花绿绒蒿点格局分析. 北京师范大学学报(自然科学版). 2023(04): 637-643 . 百度学术
    3. 董鹏,彭智奇,朱弘,朱淑霞,董京京,翟飞飞,钟育谦,郑爱春,王贤荣,伊贤贵. 南京老山秤锤树空间分布格局及种间关联性. 广西植物. 2022(02): 247-256 . 百度学术
    4. 高金辉,韩家永,张厚良,林国英,张莹,艾志强,刘继云. 刺五加群落多样性海拔梯度变化及相似性. 森林工程. 2022(04): 53-60 . 百度学术
    5. 郭忠玲,宋雪婷,范春楠,刘丹,郭梦媛,张永鑫. 紫椴天然种群空间分布与生命结构特征分析. 北华大学学报(自然科学版). 2022(06): 726-732 . 百度学术
    6. 朱文婷,刘海坤,何睿,于东悦,夏鹰,党海山. 藏东南急尖长苞冷杉群落空间点格局分析及其时空动态. 生态学报. 2022(22): 8977-8984 . 百度学术
    7. 张国娟,刘旻霞,李博文,穆若兰,于瑞新,徐璐,李亮. 玛曲高寒草甸植物黄帚橐吾与莓叶委陵菜种群点格局分析. 生态学杂志. 2021(06): 1660-1668 . 百度学术
    8. 任毅华,周尧治,侯磊,方江平,罗大庆. 色季拉山急尖长苞冷杉种群不同龄级立木的空间分布格局. 生态学报. 2021(13): 5417-5424 . 百度学术
    9. 黄小,朱江,姚兰,艾训儒,王进,吴漫玲,朱强,陈绍林. 水杉原生种群结构及空间分布格局. 生物多样性. 2020(04): 463-473 . 百度学术
    10. 王鑫,袁庆军,孙楷,郭增祥,池秀莲,黄璐琦. 甘肃地区野生当归的种群特性及其致危关联研究. 中国中药杂志. 2019(14): 2987-2995 . 百度学术
    11. 刘铁山,岳永杰,李钢铁,乌云珠拉,吕俊林. 浑善达克沙地丘间低地3种典型群落空间点格局研究. 内蒙古林业科技. 2019(02): 16-21 . 百度学术
    12. 周秋静,赵常明,王杨,郭增跃,陈芳清,谢宗强. 神农架天然针阔混交林乔木更新的空间格局. 植物科学学报. 2019(04): 454-463 . 本站查看

    其他类型引用(17)

计量
  • 文章访问数:  712
  • HTML全文浏览量:  18
  • PDF下载量:  1030
  • 被引次数: 29
出版历程
  • 收稿日期:  2020-03-29
  • 修回日期:  2020-04-23
  • 网络出版日期:  2022-10-31
  • 发布日期:  2020-10-27

目录

    /

    返回文章
    返回