Intra-annual variations in leaf traits of Cynodon dactylon (L.) Pers. during exposure period in riparian zone of Three Gorges Reservoir Area
-
摘要: 为研究三峡消落带植物叶片功能性状在落干期的变化,于2014年6月和8月,在湿- 干- 湿循环的落干阶段,分别在176、170、164、158 m(不同淹水强度)调查消落带优势草本植物狗牙根(Cynodon dactylon (L.) Pers)的8个叶片功能性状,包括:最大净光合速率(Aarea、Amass)、比叶面积(SLA)、气孔导度(Gs)、叶片氮含量(Narea、Nmass)、叶片磷含量(Parea、Pmass)。结果显示:(1)生长时长(6月和8月)对Aarea、Amass、Gs、SLA和Pmass的变异性贡献率与淹水强度相近甚至高于后者,而生长时长对Narea、Nmass和Parea变异性的贡献率较低;(2)在8个性状的两两耦合关系中,有5对(Aarea vs. Gs,Amass vs. Gs,SLA vs. Gs,Aarea vs. Narea,Pmass vs. Nmass)受到了生长时长的显著影响;(3)Amass、Nmass和Pmass在各淹水强度之间无明显变化规律。无论在6月还是8月,158 m的Aarea均大于未淹水的176 m;消落带的SLA显著小于未淹水对照带;Narea的大小依次为:158 m > 164 m > 176 m > 170 m;Parea均表现出消落带高于对照带。研究结果表明,在三峡水库消落带,年内生长时长差异会导致狗牙根的光合能力、比叶面积等多个性状发生显著变化,且对功能性状间的耦合关系影响显著;较少受到生长时长影响的稳定性状Narea和Parea可能更具群落与环境梯度之间关系的指示作用。Abstract: To study intra-annual variations in leaf traits of long-term submerged plants in the riparian zone of the Three Gorges Reservoir Area (TGA) during the dry period of the flood-dry-flood cycle, we investigated eight leaf functional traits (maximum net photosynthesis rate (Aarea, Amass), stomatal conductance (Gs), specific leaf area (SLA), leaf nitrogen concentration (Narea, Nmass), and leaf phosphorus concentration (Parea, Pmass)) of Cynodon dactylon ( L.) Pers. at four elevations (176, 170, 164, and 158 m) in June and August 2014. Results showed that: (1) Exposed period significantly contributed to variations in Aarea, Amass, Gs, SLA, and Pmass (more than 26% of total variation), similar to or even higher than submergence intensity. However, exposed days contributed little to variations in Narea, Nmass, and Parea (less than 15%). (2) Five bivariate relationships between leaf traits (Aarea vs. Gs, Amass vs. Gs, SLA vs. Gs, Aarea vs. Narea, Pmass vs. Nmass) showed significant changes between two exposed periods. The intercept of Amass vs. Gs changed significantly between June and August. (3) Amass, Nmass, and Pmass showed no obvious trends in submergence intensity between June and August; Aarea was significantly higher at 158 m than at 176 m regardless of month; SLA and Parea were significantly lower in the riparian zone (170, 164, and 158 m) than at 176 m; variation in Narea was in the order: 158 m > 164 m > 176 m > 170 m. These results suggest that annual exposed period can lead to significant variations in C. dactylon leaf traits, as well as the relationships between them. As Narea and Parea were stable traits (less affected by exposed days and submergence intensity), they may be candidate predictors for the structure and function of the TGA riparian ecosystem.
-
-
[1] New T, Xie Z. Impacts of large dams on riparian vegetation: applying global experience to the case of China’s Three Gorges Dam[J]. Biodivers Conserv, 2008, 17: 3149-3163.
[2] Zhang AY, Xie ZQ. C4 herbs dominate the reservoir flood area of the Three Gorges Reservoir[J]. Sci Tot Environ, 2021, 755: 142479.
[3] Díaz S, Kattge J, Cornelissen J, Wright IJ, Lavorel S, et al . The global spectrum of plant form and function[J]. Nature, 2016, 529:167-171.
[4] 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4): 325-339. Liu XJ, Ma KP. Plant functional traits:concepts, applications and future directions[J]. Scientia Sinica Vitae, 2015, 45: 325-339.
[5] Angelov MN, Sung SJS, Doong RL, Harms WR, Kormanik PP, Black CC. Long-and short-term flooding effects on survival and sink-source relationships of swamp-adapted tree species[J]. Tree Physiol, 1996, 16: 477-484.
[6] Li Y, Zeng B, Ye X, Qiao P, Wang H, Luo F. The effects of flooding on survival and recovery growth of the riparian plant Salix variegata Franch.[J]. Acta Ecologica Sinica, 2008, 28: 1923-1930.
[7] 李兆佳. 多年生草本植物狗牙根对三峡水库消落带带水淹胁迫的生理生态响应[D]. 北京: 中国科学院大学, 2015:1-20. [8] 李强, 丁武泉, 王书敏, 朱启红, 杨俊, 等. 三峡库区多年高水位运行对消落带狗牙根生长恢复的影响[J]. 生态学报, 2020, 40(3): 985-992. Li Q, Ding WQ, Wang SM, Zhu QH, Yang J, et al . Influence of multi-year high water level running on growth recovery of Cynodon dactylon population in water-level-fluctuating zone of the Three Gorges Reservoir[J]. Acta Ecologica Sinica, 2020, 40(3): 985-992.
[9] 揭胜麟, 樊大勇, 谢宗强, 张想英, 熊高明. 三峡水库消落带植物叶片光合与营养性状特征[J]. 生态学报, 2012, 32: 1723-1733. Jie SL, Fan DY, Xie ZQ, Zhang XY, Xiong GM. Features of leaf photosynthesis and leaf nutrient traits in reservoir riparian region of Three Gorges Reservoir, China[J]. Acta Ecologica Sinica, 2012, 32(6): 1723-1733.
[10] Rose L, Rubarth MC, Hertel D, Leuschner C. Management alters interspecific leaf trait relationships and trait-based species rankings in permanent meadows[J]. J Veg Sci, 2013, 24: 239-250.
[11] Dwyer JM, Hobbs RJ, Mayfield MM. Specific leaf area responses to environmental gradients through space and time[J]. Ecology, 2014, 95: 399-410.
[12] 金明月. 季节及树龄对东北阔叶树种叶性状及其权衡的影响[D]. 哈尔滨: 东北林业大学, 2019: 8-26. [13] Liao J, Jiang M, Li L. Effects of simulated submergence on survival and recovery growth of three species in water fluctuation zone of the Three Gorges Reservoir[J]. Acta Ecologica Sinica, 2010, 30: 216-220.
[14] 刘云峰, 刘正学. 三峡水库消落区极限条件下狗牙根适生性试验[J]. 西南农业大学学报, 2006, 27: 661-663. Liu YF, Liu ZX. Adaptability test of Cynodon dactylon (L.) Pers. in the ebb and flow zone of the Three Gorges Reservoir under extreme conditions[J]. Journal of Southwest Agricultural University, 2006, 27: 661-663.
[15] 甘丽萍, 杨玲, 李豪, 李欣, 任立. 三峡库区消落带狗牙根与桑树淹没后的恢复机制[J]. 中国水土保持科学, 2020, 18(5): 64-72. Gan LP, Yang L, Li H, Li X, Ren L. Recovery mechanism of Cynodon dactylon and Morus alba after re-emergence in the water-level-fluctuating zone of the Three Gorges Reservoir[J]. Science of Soil and Water Conservation, 2020, 18(5): 64-72.
[16] Wu J, Neimanis S, Heber U. Photorespiration is more effective than the Mehler reaction in protecting the photosynthetic apparatus against photoinhibition[J]. Botanica Acta, 1991, 104: 283-291.
[17] Oxborough K, Baker NR. Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photoche-mical and non-photochemical components-calculation of qP and F v-/ F m-; without measuring F o[J]. Photosynth Res, 1997, 54: 135-142.
[18] Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, et al. New handbook for standardised measurement of plant functional traits worldwide[J]. Aust J Bot, 2013, 61: 167-234.
[19] Jin Y, Didham RK, Yuan J, Hu G, Yu J, et al . Cross-scale drivers of plant trait distributions in a fragmented forest landscape[J]. Ecography, 2020, 43(3):467-479.
[20] Chatterjee A, Lal R, Wielopolski L, Martin MZ, Ebinger MH. Evaluation of different soil carbon determination methods[J]. Crit Rev Plant Sci, 2009, 28(3):164-178.
[21] 中华人民共和国农业部.中华人民共和国农业行业标准NY/T 2017-2011(植物中氮、磷、钾的测定)[S]. 2011. [2011-12-01]. Ministry of Agriculture of the PRC. Agricultural Industry Standard of the PRC: NY/T 2017-2011(Determination of nitrogen, phosphorus and potassium in plants) [S]. 2011. [2011-12-01].
[22] Falster DS, Warton DI, Wright IJ. User’s guide to SMATR: Standardised major axis tests & routines (version 2.0)[J/OL].2006. [2019-08-23]. http://www.bio.mq.edu.au/ecology/SMATR.
[23] Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, et al . The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821-827.
[24] Rose L, Rubarth MC, Hertel D, Leuschner C. Management alters interspecific leaf trait relationships and trait-based species rankings in permanent meadows[J]. J Veg Sci, 2013, 24: 239-250.
[25] Dwyer JM, Hobbs RJ, Mayfield MM. Specific leaf area responses to environmental gradients through space and time[J]. Ecology, 2014, 95: 399-410.
[26] Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, et al . Intraspecific functional variability: extent, structure and sources of variation[J]. J Ecol, 2010, 98: 604-613.
[27] Coyle JR. Intraspecific variation in epiphyte functional traits reveals limited effects of microclimate on community assembly in temperate deciduous oak canopies[J]. Oikos, 2017, 126: 111-120.
[28] Bardgett R, Mawdsley J, Edwards S, Hobbs P, Rodwell J, Davies WJ. Plant species and nitrogen effects on soil biological properties of temperate upland grasslands[J]. Funct Ecol, 1999, 13: 650-660.
[29] Wright IJ, Reich P, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high-and low-rainfall and high-and low-nutrient habitats[J]. Funct Ecol, 2001, 15: 423-434.
[30] Raouda A, Miche D, Pierre TJ, Sylvain P, Pablo C. Varia-tion in leaf traits through seasons and N-availability levels and its consequences for ranking grassland species[J]. J Veg Sci, 2005, 16(4): 391-398.
[31] Bucher SF, Feiler R, Buchner O, Neuner G, RosbakhS, et al . Temporal and spatial trade-offs between resistance and performance traits in herbaceous plant species[J]. Environ Exp Bot, 2019, 157: 187-196.
[32] Catherine P, Rémi P, Emilie T, Loïc P, Jean R, Lorna D. Effect of species, root branching order and season on the root traits of 13 perennial grass species[J]. Plant Soil, 2012, 353:47-57.
[33] 陈芳清, 黄友珍, 樊大勇, 谢宗强. 水淹对狗牙根营养繁殖植株的生理生态学效应[J]. 广西植物, 2010, 30(4): 488-492. Chen FQ, Huang YZ, Fan DY, Xie ZQ. Ecophysiological responses of vegetative propagule of Cynodon dactylon to simulated summer flooding[J]. Guihaia, 2010,30(4): 488-492.
[34] 郭泉水, 洪明, 裴顺祥, 王祥福, 聂必红, 等. 香根草形态性状和光合特性对三峡库区消落带水陆生境变化的响应[J]. 西北植物学报, 2012, 32: 2328-2335. Guo QS, Hong M, Pei SX, Wang FX, Nie BH, et al . Form traits and photosynthesis characteristics of Vetiveria zizanioides response to flooding-drying habitat changes in the hydro-fluctuation belts of the Three Gorges Reservoir[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32: 2328-2335.
-
期刊类型引用(1)
1. 江维薇,查子霞,肖衡林. 金沙江观音岩水库消落带绝对优势植物的表型可塑性与适应策略. 湖泊科学. 2024(01): 261-273 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 278
- HTML全文浏览量: 48
- PDF下载量: 131
- 被引次数: 1