高级检索+

花部微生物生态学研究进展

周肖霄, 张彦文, 赵骥民, 李竹月

周肖霄,张彦文,赵骥民,李竹月. 花部微生物生态学研究进展[J]. 植物科学学报,2023,41(1):121−127. DOI: 10.11913/PSJ.2095-0837.22036
引用本文: 周肖霄,张彦文,赵骥民,李竹月. 花部微生物生态学研究进展[J]. 植物科学学报,2023,41(1):121−127. DOI: 10.11913/PSJ.2095-0837.22036
Zhou XX,Zhang YW,Zhao JM,Li ZY. Advances in floral microbial ecology[J]. Plant Science Journal,2023,41(1):121−127. DOI: 10.11913/PSJ.2095-0837.22036
Citation: Zhou XX,Zhang YW,Zhao JM,Li ZY. Advances in floral microbial ecology[J]. Plant Science Journal,2023,41(1):121−127. DOI: 10.11913/PSJ.2095-0837.22036
周肖霄,张彦文,赵骥民,李竹月. 花部微生物生态学研究进展[J]. 植物科学学报,2023,41(1):121−127. CSTR: 32231.14.PSJ.2095-0837.22036
引用本文: 周肖霄,张彦文,赵骥民,李竹月. 花部微生物生态学研究进展[J]. 植物科学学报,2023,41(1):121−127. CSTR: 32231.14.PSJ.2095-0837.22036
Zhou XX,Zhang YW,Zhao JM,Li ZY. Advances in floral microbial ecology[J]. Plant Science Journal,2023,41(1):121−127. CSTR: 32231.14.PSJ.2095-0837.22036
Citation: Zhou XX,Zhang YW,Zhao JM,Li ZY. Advances in floral microbial ecology[J]. Plant Science Journal,2023,41(1):121−127. CSTR: 32231.14.PSJ.2095-0837.22036

花部微生物生态学研究进展

基金项目: 国家自然科学基金 (31972363,32172508)
详细信息
    作者简介:

    周肖霄(1996−),女,硕士研究生,研究方向为植物生物学(E-mail:1050389211@qq.com

    通讯作者:

    张彦文: E-mail:yanwen0209@163.com

  • 中图分类号: Q948.12+2.1

Advances in floral microbial ecology

Funds: This work was supported by grants from the National Natural Science Foundation of China (31972363,32172508)
  • 摘要:

    植物表面的微生物群落组成及其与植物宿主、环境间的关系一直是人们关注的话题。本文综述了国内外关于花部微生物群落组成与多样性、花部微生物群落的动态变化及其与植物宿主和传粉者之间相互作用的最新研究结果;指出了尚存的问题和不足,提出了今后的研究方向和研究路径,即综合运用分子生物学与生物信息学手段,进一步揭示花部微生物定殖的决定因素,并对花部微生物群落的时空分布以及时间模型进行详细阐释;最后简要讨论了花部微生物群落与寄主植物间的互利共生关系。

    Abstract:

    The composition and diversity of microbial communities on plant surfaces and their relationships with plant hosts and the environment have long been of interest. In this paper, we review the latest research results on the composition and diversity of floral microbial communities, spatiotemporal patterns of floral microbial communities, and their interactions with plant hosts and pollinators. Current unresolved problems and future research paths and directions are also discussed. The determinants of floral microbial colonization using a combination of molecular biology and bioinformatics are explored. Furthermore, the spatiotemporal patterns of the floral microbial community are explained in detail. Finally, mutualism between floral microbial community composition and host plants is briefly discussed, which may provide a useful reference for research in the future.

  • 由于物种的形态多样性,长期以来描述并区分它们的唯一方法是细胞形态学[1]。作为进化出多细胞结构的原核生物之一,丝状蓝藻在形态特征和遗传发育方面具有多样性[2, 3]。传统的蓝藻分类和鉴定基于形态学方法,但仅依靠形态特征并不能对蓝藻进行准确分类[4, 5]。随着分子生物学和遗传学的发展,遗传、生态和生化等现代方法也应用到蓝藻的分类中[6, 7]。从Geitler在1925年提出的七目系统[8],到Komárek等[9]在2014年提出的八目系统,再到Strunecký等[10]提出的二十目系统,这些分类系统的更新都是为了建立更加合理的分类体系,为进一步对单系的蓝藻类群重修和整合提供了理论依据。因此,运用形态学、生态学和分子数据等多相方法来进行系统发育分析逐渐成为确定蓝藻分类地位的最佳方法。

    细点丝藻(Oculatella)属于细点丝藻目细点丝藻科,由Zammit等[11]于2012年建立,目前包括14个种,模式种为O. subterranea Zammit, Billi & Albertano。该属在横壁和无色的鞘处略微收缩,细胞偶尔呈现紫红色,丝状体顶端细胞含有橘色颗粒,可能是一种对光敏感的物质。乌克兰细点丝藻(O. ucrainica O. Vinogradova & T. Mikhailyuk)是由Vinogradova等[12]在2017年从土壤结皮与海岸边分离出来并描述为新种的,该种属于耐旱陆生物种,且其丝状体更宽,藻丝伸长是鞘在丝状体上缩短所致,在系统发育分析中,乌克兰细点丝藻具有单独的进化枝,具有与其他物种不同的二级结构。

    据报道,细点丝藻属最早从意大利罗马和马耳他拉巴特的潮湿土壤中分离得到[11],近几年在西班牙也发现了该属其他新种的踪迹[12],但目前该物种在我国还未见报道和描述。本文首次报道了采自我国太原师范学院校园潮湿土壤和贵阳市花溪公园湿润墙面的乌克兰细点丝藻,通过形态学、生态学和系统发育学等多相方法对其进行分类鉴定[13]。新记录种的报道增加了中国蓝藻物种多样性,可为蓝藻的进一步修订和分类提供科学依据。

    两株丝状蓝藻分别采集于贵州省贵阳市花溪公园的湿润墙面和山西省太原师范学院校园的潮湿土壤表面,使用镊子和小刀进行采集,将样品装入收集瓶中,并记录采集地的经纬度、温度、海拔和pH值等详细信息(表1)。

    表  1  采集地的详细信息
    Table  1.  Details of the collection site
    藻株
    Strain
    采集地
    Collection site
    经纬度
    Latitude and longitude
    海拔
    Elevation / m
    温度
    Temperature / ℃
    pH值
    pH value
    生境
    Habitat
    SXACC0051 山西省太原师范学院校园 26°26ˊ07″N,
    106°39ˊ57″E
    808 16.3 7.59 潮湿土壤
    SXACC0050 贵州省贵阳市花溪湿地公园 26°26ˊ07″N,
    106°39ˊ57″E
    1 140 20.5 7.86 湿润墙面
    下载: 导出CSV 
    | 显示表格

    将采集的样品进行富集培养,利用经典的毛细管分离法[14]分离纯化藻株。首先在倒置显微镜下挑取单根藻丝体,使用无菌水多次清洗,然后在含BG-11/CT培养基的24孔细胞培养板中进行培养。

    当长出形态一致的藻丝后,转入三角瓶中扩大培养,放置在恒温光照培养箱中,保持光照强度2 000 Lx,温度(25±1)℃,12 h/12 h 的光暗循环[15],纯化后的藻种保存在太原师范学院淡水藻种库中,编号分别为SXACC0050和SXACC0051。

    使用Nikon Eclipse NI型光学显微镜[16]观察蓝藻的形态特征,借助NIS-Elements D 5.20软件拍摄藻种的显微图片,并测量细胞的尺寸,尺寸用“min-max”表示,每个样本至少包含30个藻丝体。拍摄的照片使用软件Illustrator CS5和Photoshop CC 2019 SP 20.0.0进行处理。

    将藻体研碎后,使用改进的CTAB法[17,18]提取细点丝藻基因组DNA,将提取的DNA放入−20 ℃冰箱中保存备用。选取16S rRNA和16S-23S rRNA基因序列进行系统发育分析,使用引物PA(5ˊ-AGAGTTTGATCCTGGCTCAG-3ˊ)和B23S[19](5ˊ-CTTCGCCTCTGTGTGCCTAGGT-3ˊ)以及F1[20](5ˊ-TTGATCCTGGCTCAGGATGA-3ˊ)和1492[21](5ˊ-GGTTACCTTGTTACGACTT-3ˊ)分别对SXACC0050和SXACC0051进行16S rRNA基因的扩增,引物322(5ˊ-CTCTGTGTGCCTAGGTATCC-3ˊ)和340[22](5ˊ-GGGGAATTTTCCGCAATGGG-3ˊ)用于扩增16S-23S ITS区域。PCR反应体系参考文献[23]报道。PCR循环在95 ℃下预变性3 min,94 ℃变性30 s,55 ℃退火30 s,72 ℃延伸50 s,进行35次循环[24],最后,在72 ℃下延伸5 min。用1%琼脂糖凝胶电泳法纯化PCR产物。

    将纯化的PCR产物进行双向测序(北京六合华大基因科技有限公司)。测序后的序列提交到 NCBI(https://www.ncbi.nlm.nih.gov/)GenBank 数据库中。

    将序列与NCBI数据库中的序列进行BLAST比对,选取并下载相似度较高和有代表性的序列。使用Bio Edit 7.0[25] 软件中的Clustal W进行多重序列比对,然后编辑并切除未对齐的两端序列。运用软件MEGA11[26]以邻接法构建NJ系统发育树,使用软件RAxML[27]构建ML系统发育树,最适模型是由MEGA11软件中的Find Best DNA/Protein Models程序对相关序列进行测试,在Model Finder的Akaike信息准则(AIC)下[28],选择最佳拟合模型GTR+I+G进行BI和ML分析,通过使用1 000 次重复的引导分析来估计系统发育树的稳健性[29]。利用Mrbayes 3.1.2[30]软件进行贝叶斯分析,运行1 000 000代,每100代取样,去除前25%样本树,使用软件Fig Tree version 1.4.2 [31]和Adobe Illustrator CS5对系统发育树进行编辑处理。BI、ML和NJ树均以粘菌藻(Gloeobacter violaceus PCC7421)作为外类群。

    使用软件RNA structure[32]和RNA fold web server预测藻株的二级结构,分析并对比了其D1-D1ˊ、Box-B以及V3螺旋结构,进一步确定藻株类别。所有藻株的结构格式均在Adobe Illustrator CS5软件中进行修改。

    乌克兰细点丝藻图1图2

    图  1  光学显微镜下SXACC0050的形态特征
    A: 群体形态;B:藻丝体;C:有鞘出现;D~F:单根藻丝;G:在横壁和无色鞘处略微收缩。标尺为5 μm。
    Figure  1.  Micrographs of SXACC0050 under light microscopy
    A: Group morphology; B: Filaments; C: Appearance of sheath; D-F: Single algal filament; G: Slightly constricted at transverse wall and colorless sheath. Scale bars is 5 μm.
    图  2  光学显微镜下SXACC0051的形态特征
    A:群体形态;B、C:单根藻丝;D:藻丝体;E:有鞘出现。标尺为10 μm。
    Figure  2.  Micrographs of SXACC0051 under light microscopy
    A: Group morphology; B, C: Single algal filament; D: Filaments; E: Appearance of sheath. Scale bars is 10 μm.

    Oculatella ucrainica Oxana Vinogradova & Tatiana Mikhailyuk,2017[12]

    生境:潮湿的土壤和墙面。

    分布:山西省太原师范学院校园和贵州省贵阳市花溪湿地公园。

    参考藻株:SXACC0050、SXACC0051。

    形态描述:藻株蓝绿色,藻丝紧密缠绕在一起,呈典型的簇状(图1:A,图2:A)。丝状体直或弯曲(图1:B~F,图2:B~E),直径约为1~3 μm,由无色鞘包围的细胞组成(图1:C~G,图2 :B~E)。鞘透明且薄,有时为双层,两端偶尔开放(图2:C)。藻丝由细长的细胞组成,细胞圆柱形,宽1~2.5 μm,长1.5~4.5 μm,在横壁和无色鞘处略微收缩(图1:G)。藻丝顶端细胞圆形或圆锥形,含有橘色颗粒(红色箭头表示)。通过藻丝断裂形成2~6个细胞的藻殖段进行繁殖(图1:B,图2:E)。

    本研究测定了藻株SXACC0050和SXACC0051的16S rRNA 基因序列,长度分别为1 316 bp和1 265 bp,其与细点丝藻属藻株的基因序列相似度分别为98.0%~99.7%和98.3%%~99.9%(表2),与乌克兰细点丝藻的基因序列差异小于0.1%。选择与其相似度较高的序列构建16S rRNA 基因系统发育树,以Gloeobacter violaceus PCC7421为外类群,采用BI、ML和NJ法构建了包含47条相关序列的系统发育树,3种系统发育树具有较为一致的分支位点及拓扑结构,图3为贝叶斯法构建的系统发育树。

    表  2  SXACC0050和SXACC0051与细点丝藻属的16S rRNA基因相似性
    Table  2.  Sequence similarity comparison of 16S rRNA gene between SXACC0050, SXACC0051, and Oculatella
    藻株
    Strain
    1 2 3 4 5 6 7 8
    1. SXACC0050
    2. SXACC0051 99.7%
    3. Oculatella ucrainica strain KZ-5-4-1 99.7% 99.9%
    4. Oculatella neakameniensis str. Kovacik 1990/37 98.2% 98.5% 98.5%
    5. Oculatella mojaviensis CMT-3BRIN-NPC87 99.5% 99.8% 99.6% 98.4%
    6. Oculatella coburnii WJT66-NPBG6A 99.5% 99.8% 99.8% 98.5% 99.8%
    7. Oculatella hafneriensis str. HINDAK 1982/12 98.0% 98.3% 98.3% 97.8% 98.3% 98.4%
    8. Oculatella dilatativagina UAM 687 99.4% 99.6% 99.5% 98.4% 99.9% 99.5% 98.3%
    9. Oculatella kazantipica strain SAG 2567 99.0% 99.2% 99.3% 98.4% 98.9% 99.1% 98.8% 98.9%
    下载: 导出CSV 
    | 显示表格
    图  3  基于16S rRNA基因序列的BI/ML/NJ系统发育树
    节点处数字表示在 BI/ML/NJ中大于50%的支持数值,标尺每刻度代表0.07的进化距离。红色字体表示本研究分离的藻株。
    Figure  3.  BI/ML/NJ phylogenetic trees based on 16S rRNA gene sequences
    Numbers at each node represent over 50% supporting values in BI/ML/NJ phylogenetic tree, scale bar represents evolution distance of 0.07 per scale. Strains in this study are indicated in red.

    图3可知,藻株SXACC0050和SXACC0051位于细点丝藻属的进化枝中,且与乌克兰细点丝藻聚为一支(红色字体),BI/ML/NJ的后验概率和自展值分别为0.73/81/59和0.72/82/52,与细点丝藻属中的其他物种分离。结果表明,藻株SXACC0050和SXACC0051大概率属于乌克兰细点丝藻。

    通过测序,得到了SXACC0050(622 bp)和SXACC0051 (622 bp)藻株的ITS序列,选择D1-D1′、Box-B和V3螺旋3个保守区域进行分析。藻株SXACC0050和SXACC0051的二级结构与细点丝藻结构相似,尤其是与乌克兰细点丝藻的二级结构差异很小(图4~图6)。藻株SXACC0050和SXACC0051与乌克兰细点丝藻的D1-D1′螺旋结构相似,其D1-D1′螺旋均为64个核苷酸,共有5个茎环结构,基部茎由1个含5 bp的螺旋构成,基部3′侧环由7个未配对的核苷酸(5′-CAUCCCA-3′)组成,之后是1个1∶1的双侧凸起(U∶U),末端环由3 bp碱基(5′-CAG-3′)构成。但与乌克兰细点丝藻相比,藻株SXACC0050的第33位由胞嘧啶变为尿嘧啶,第41位由鸟嘌呤变为腺嘌呤(图4:A),藻株SXACC0051的茎环结构发生改变(图4:B)。SXACC0050和SXACC0051两个藻株与乌克兰细点丝藻的Box-B结构略有差异。Box-B螺旋由34个核苷酸组成,共有3个茎环结构,基部茎均由1个含4 bp碱基的螺旋构成,末端环由6 bp碱基组成。但与乌克兰细点丝藻相比,两个藻株的末端环碱基有所不同(图5:A、B)。乌克兰细点丝藻的V3螺旋包含52个核苷酸,共有4个茎环结构,基部茎由1个含4 bp碱基的螺旋构成,末端环由4 bp碱基构成。与乌克兰细点丝藻相比,SXACC0050和SXACC0051中该结构的碱基发生变化,第43位由鸟嘌呤变为腺嘌呤,末端环碱基也不同(图6)。分析结果支持两个藻株均属于乌克兰细点丝藻(图4~图6)。

    图  4  SXACC0050、SXACC0051和细点丝藻的D1-D1′结构
    Figure  4.  D1-D1′ structures of SXACC0050, SXACC0051, and Oculatella
    图  6  SXACC0050、SXACC0051和细点丝藻的V3螺旋结构
    Figure  6.  V3 helix structures of SXACC0050, SXACC0051, and Oculatella
    图  5  SXACC0050、SXACC0051和细点丝藻的Box-B结构
    Figure  5.  Box-B structures of SXACC0050, SXACC0051, and Oculatella

    在现代蓝藻分类学中,理想的蓝藻属和种应该是单系的[9, 33]。近年来,蓝藻的分类依据在不断变化[8, 34, 35],从只通过形态特征描述到加入分子数据,再到结合生态环境等多相方法,蓝藻分类系统得到了大量的修正和重建[36],蓝藻属和种也在向单系方向推进。细点丝藻科在2018年由Mai等[37]从细鞘丝藻科分离出来,该科当时属于聚球藻目,同时他们还将假鱼腥藻目[38]包含的简单丝状蓝藻合并到聚球藻目中,系统发育分析表明,细点丝藻科中混有细鞘丝藻(Leptolyngbya)和假鱼腥藻属(Pseudanabaena[38],所以该科需要修订和重建。细点丝藻科的模式属为细点丝藻属,根据藻类数据库 Algaebase统计,目前细点丝藻属有14个物种被描述,并被有效接受。该属的大部分物种为陆生种类,其主要形态特征是在丝状体顶端含有特殊的橙色颗粒[11],呈现斑点状,这种颗粒可能是一种对光敏感的物质。细点丝藻属分布的生态环境也非常特殊,其模式种(O. subterranea Zammit, Billi & Albertano)是从马耳他的地下环境中发现的,该地湿度很高,光照强度很低,是较为特殊的极端环境。细点丝藻的16S rRNA基因相似度较高,容易同相邻或相近的属种混淆,需要通过ITS二级结构进行区分。

    本研究通过构建系统发育树,发现分别从山西省和贵州省分离到的两株丝状蓝藻SXACC0051和SXACC0050分布在细点丝藻进化分支中,且与乌克兰细点丝藻聚为一支,具有较高的支持值。二者与细点丝藻属几个藻种的序列相似度大于98.7%,高于2014年Kim等[13]提出的区分两个物种的阈值。这两个藻株与细点丝藻属的形态特征相似,均在丝状体顶端出现橘色颗粒,不分枝,均通过丝状体断裂形成2~6个细胞的藻殖段进行繁殖[11]。从细胞大小来看,SXACC0050和SXACC0051的藻丝均比Vinogradova等[12]在2017年描述的乌克兰细点丝藻更宽,这可能是其来源于不同的生态环境造成的。通过ITS二级结构分析,发现两个藻株的D1-D1′、Box-B和V3螺旋这3个保守区域均与乌克兰细点丝藻具有较高的相似性,进一步证实了形态学的鉴定结果。基于此,我们认为,SXACC0050和SXACC0051为中国新记录属细点丝藻属的一个新记录种。乌克兰细点丝藻在我国属于首次报道,也增加了我国蓝藻的物种多样性。目前,有关细点丝藻属的研究报道较少,主要分布在乌克兰[12]、马耳他[11]、意大利、西班牙[39]等国家,大量采集标本和运用多相方法进行鉴定可能有助于解决这个问题。未来我们也应该加强此类研究,以期为我国藻类开发和利用提供科学依据。

  • [1]

    Agler MT,Ruhe J,Kroll S,Morhenn C,Kim ST,et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation[J]. PLoS Biol,2016,14 (1):e1002352. doi: 10.1371/journal.pbio.1002352

    [2]

    Redford AJ,Bowers RM,Knight R,Linhart Y,Fierer N. The ecology of the phyllosphere:geographic and phylogenetic variability in the distribution of bacteria on tree leaves[J]. Environ Microbiol,2010,12 (11):2885−2893. doi: 10.1111/j.1462-2920.2010.02258.x

    [3]

    Schaeffer RN,Rering CC,Maalouf I,Beck JJ,Vannette RL. Microbial metabolites elicit distinct olfactory and gustatory preferences in bumblebees[J]. Biol Lett,2019,15 (7):20190132. doi: 10.1098/rsbl.2019.0132

    [4]

    Boutroux L. Sur la conservation des ferments alcooliques dans la nature[J]. Annales des Sciences Naturelles,Série Ⅳ,Botanique,1884,17:145−209.

    [5]

    Smessaert J,van Geel M,Verreth C,Crauwels S,Honnay O,et al. Temporal and spatial variation in bacterial communities of “Jonagold” apple (Malus x domestica Borkh. ) and “Conference” pear (Pyrus communis L. ) floral nectar[J]. Microbiologyopen,2019,8 (12):e918.

    [6]

    Ottesen AR,González Peña A,White JR,Pettengill JB,Li C,et al. Baseline survey of the anatomical microbial ecology of an important food plant:Solanum lycopersicum (tomato)[J]. BMC Microbiol,2013,13 (1):1−12. doi: 10.1186/1471-2180-13-1

    [7] 荀二娜,赵骥民,郭继勋,张彦文. 花蜜微生物及其生态功能研究进展[J]. 生态学报,2017,37(6):1757−1768. Xun EN,Zhao JM,Guo JX,Zhang YW. Nectar-dwelling microorganisms and their ecological functions[J]. Acta Ecologica Sinica,2017,37 (6):1757−1768.

    Xun EN, Zhao JM, Guo JX, Zhang YW. Nectar-dwelling microorganisms and their ecological functions[J]. Acta Ecologica Sinica, 2017, 37(6): 1757-1768.

    [8]

    Rothman JA,Andrikopoulos C,Cox-Foster D,McFrederick QS. Floral and foliar source affect the bee nest microbial community[J]. Microb Ecol,2019,78 (2):506−516. doi: 10.1007/s00248-018-1300-3

    [9]

    Aizenberg-Gershtein Y,Izhaki I,Halpern M. Do honeybees shape the bacterial community composition in floral nectar?[J]. PLoS One,2013,8 (7):e67556. doi: 10.1371/journal.pone.0067556

    [10]

    Rebolleda-Góomez M,Forrester NJ,Russell AL,Wei N,Fetters AM,et al. Gazing into the anthosphere:considering how microbes influence floral evolution[J]. New Phytol,2019,224 (3):1012−1020. doi: 10.1111/nph.16137

    [11]

    Vorholt JA. Microbial life in the phyllosphere[J]. Nat Rev Microbiol,2012,10 (12):828−840. doi: 10.1038/nrmicro2910

    [12]

    Belisle M,Peay KG,Fukami T. Flowers as islands:spatial distribution of nectar-inhabiting microfungi among plants of Mimulus aurantiacus,a hummingbird-pollinated shrub[J]. Microb Ecol,2012,63 (4):711−718. doi: 10.1007/s00248-011-9975-8

    [13]

    Green SK,Schroth MN,Cho JJ,Kominos SD,Vitanza-Jack VB. Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa[J]. Appl Microbiol,1974,28 (6):987−991. doi: 10.1128/am.28.6.987-991.1974

    [14]

    Jacquemyn H,Pozo MI,Álvarez-Pérez S,Lievens B,Fukami Te. Yeast-nectar interactions:metacommunities and effects on pollinators[J]. Curr Opin Insect Sci,2021,44:35−40. doi: 10.1016/j.cois.2020.09.014

    [15]

    Cordovez V,Dini-Andreote F,Carrión VJ,Raaijmakers JM. Ecology and evolution of plant microbiomes[J]. Annu Rev Microbiol,2019,73:69−88. doi: 10.1146/annurev-micro-090817-062524

    [16]

    Jules ES,Kauffman MJ,Ritts WD,Carroll AL. Spread of an invasive pathogen over a variable landscape:a nonnative root rot on Port Orford cedar[J]. Ecology,2002,83 (11):3167−3181. doi: 10.1890/0012-9658(2002)083[3167:SOAIPO]2.0.CO;2

    [17]

    Duressa D, Rauscher G, Koike ST, Mou B, Hayes RJ, et al. Detection and quantification of Verticillium dahliae in spinach seed [C] // Proceedings of the 10th International Congress of Plant Pathology. Beijing: Chinese Society for Plant Pathology, 2013: 255

    [18]

    Maruthachalam K,Klosterman SJ,Anchieta A,Mou B,Subbarao KV. Colonization of spinach by Verticillium dahliae and effects of pathogen localization on the efficacy of seed treatments[J]. Phytopathology,2013,103 (3):268−280. doi: 10.1094/PHYTO-05-12-0104-R

    [19]

    Von Arx M,Moore A,Davidowitz G,Arnold AE. Diversity and distribution of microbial communities in floral nectar of two night-blooming plants of the Sonoran Desert[J]. PLoS One,2019,14 (12):e0225309. doi: 10.1371/journal.pone.0225309

    [20]

    Compant S,Mitter B,Colli-Mull JG,Gangl H,Sessitsch A. Endophytes of grapevine flowers,berries,and seeds:identification of cultivable bacteria,comparison with other plant parts,and visualization of niches of colonization[J]. Microb Ecol,2011,62 (1):188−197. doi: 10.1007/s00248-011-9883-y

    [21]

    Mittelbach M,Yurkov AM,Nocentini D,Nepi M,Weigend M,Begerow D. Nectar sugars and bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands[J]. BMC Ecol,2015,15 (1):2. doi: 10.1186/s12898-015-0036-x

    [22]

    Vannette RL,Fukami T. Nectar microbes can reduce secondary metabolites in nectar and alter effects on nectar consumption by pollinators[J]. Ecology,2016,97 (6):1410−1419. doi: 10.1890/15-0858.1

    [23]

    Herrera CM,Pozo MI. Nectar yeasts warm the flowers of a winter-blooming plant[J]. Proc Roy Soc B:Biol Sci,2010,277 (1689):1827−1834.

    [24]

    Junker RR,Loewel C,Gross R,Dötterl S,Keller A,Blüthgen N. Composition of epiphytic bacterial communities differs on petals and leaves[J]. Plant Biol,2011,13 (6):918−924. doi: 10.1111/j.1438-8677.2011.00454.x

    [25]

    Álvarez-Pérez S,Herrera CM. Composition,richness and nonrandom assembly of culturable bacterial-microfungal communities in floral nectar of Mediterranean plants[J]. FEMS Microbiol Ecol,2013,83 (3):685−699. doi: 10.1111/1574-6941.12027

    [26]

    Rivest S,Forrest JRK. Defence compounds in pollen:why do they occur and how do they affect the ecology and evolution of bees?[J]. New Phytol,2020,225 (3):1053−1064. doi: 10.1111/nph.16230

    [27]

    Paulussen C,Hallsworth JE,Álvarez-Pérez S,Nierman WC,Hamill PG,et al. Ecology of aspergillosis:insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species[J]. Microb Biotechnol,2017,10 (2):296−322. doi: 10.1111/1751-7915.12367

    [28]

    Vannette RL,Fukami T. Contrasting effects of yeasts and bacteria on floral nectar traits[J]. Ann Bot,2018,121 (7):1343−1349. doi: 10.1093/aob/mcy032

    [29]

    Thornburg RW,Carter C,Powell A,Mittler R,Rizhsky L,Horner HT. A major function of the tobacco floral nectary is defense against microbial attack[J]. Plant Syst Evol,2003,238 (1):211−218.

    [30]

    Huang MS,Sanchez-Moreiras AM,Abel C,Sohrabi R,Lee S,et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers,the sesquiterpene ( E )-β-caryophyllene,is a defense against a bacterial pathogen[J]. New Phytol,2012,193 (4):997−1008. doi: 10.1111/j.1469-8137.2011.04001.x

    [31]

    Boachon B,Lynch JH,Ray S,Yuan J,Caldo KMP,et al. Natural fumigation as a mechanism for volatile transport between flower organs[J]. Nat Chem Biol,2019,15 (6):583−588. doi: 10.1038/s41589-019-0287-5

    [32]

    Toju H,Vannette RL,Gauthier MPL,Dhami MK,Fukami T. Priority effects can persist across floral generations in nectar microbial metacommunities[J]. Oikos,2018,127 (3):345−352. doi: 10.1111/oik.04243

    [33]

    Vannette RL,Gauthier MPL,Fukami T. Nectar bacteria,but not yeast,weaken a plant-pollinator mutualism[J]. Proc Biol Sci,2012,280 (1752):20122601.

    [34]

    Nelson EB. The seed microbiome:Origins,interactions,and impacts[J]. Plant Soil,2018,422 (1-2):7−34. doi: 10.1007/s11104-017-3289-7

    [35]

    Russell AL,Ashman TL. Associative learning of flowers by generalist bumble bees can be mediated by microbes on the petals[J]. Behav Ecol,2019,30 (3):746−755. doi: 10.1093/beheco/arz011

    [36]

    Rering CC,Beck JJ,Hall GW,McCartney MM,Vannette RL. Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator[J]. New Phytol,2018,220 (3):750−759. doi: 10.1111/nph.14809

    [37]

    Whitney HM,Bennett KMV,Dorling M,Sandbach L,Prince D,et al. Why do so many petals have conical epidermal cells?[J]. Ann Bot,2011,108 (4):609−616. doi: 10.1093/aob/mcr065

    [38]

    Andrews JH,Kenerley CM. Microbial populations associated with buds and young leaves of apple[J]. Can J Bot,1980,58 (8):847−855. doi: 10.1139/b80-109

    [39]

    Ambika Manirajan B,Ratering S,Rusch V,Schwiertz A,Geissler-Plaum R,et al. Bacterial microbiota associated with flower pollen is influenced by pollination type,and shows a high degree of diversity and species-specificity[J]. Environ Microbiol,2016,18 (12):5161−5174. doi: 10.1111/1462-2920.13524

    [40]

    Curran HR,Roets F,Dreyer LL. Anther-smut fungal infection of South African Oxalis species:spatial distribution patterns and impacts on host fecundity[J]. South Afr J Bot,2009,75 (4):807−815. doi: 10.1016/j.sajb.2009.08.004

    [41]

    Alexander HM. Epidemiology of anther-smut infection of silene alba caused by ustilago violacea:patterns of spore deposition and disease incidence[J]. J Ecol,1990,78 (1):166−179. doi: 10.2307/2261043

    [42]

    Pusey PL,Stockwell VO,Mazzola M. Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora[J]. Phytopathology,2009,99 (5):571−581. doi: 10.1094/PHYTO-99-5-0571

    [43]

    Spinelli F,Ciampolini F,Cresti M,Geider K,Costa G. Influence of stigmatic morphology on flower colonization by Erwinia amylovora and Pantoea agglomerans[J]. Eur J Plant Pathol,2005,113 (4):395−405. doi: 10.1007/s10658-005-4511-7

    [44]

    Scherm H,Ngugi HK,Ojiambo PS. Trends in theoretical plant epidemiology[J]. Eur J Plant Pathol,2006,115 (1):61−73. doi: 10.1007/s10658-005-3682-6

    [45]

    Heil M. Nectar:generation,regulation and ecological functions[J]. Trends Plant Sci,2011,16 (4):191−200. doi: 10.1016/j.tplants.2011.01.003

    [46]

    Aguiar JMRBV, Roselino AC, Sazima M, Giurfa M. Can honey bees discriminate between floral-fragrance isomers? [J]. J Exp Biol, 2018, 221(Pt 14): jeb180844.

    [47]

    Herrera CM,de Vega C,Canto A,Pozo MI. Yeasts in floral nectar:a quantitative survey[J]. Ann Bot,2009,103 (9):1415−1423. doi: 10.1093/aob/mcp026

    [48]

    Hirose D,Matsuoka S,Osono T. Assessment of the fungal diversity and succession of ligninolytic endophytes in Camellia japonica leaves using clone library analysis[J]. Mycologia,2013,105 (4):837−843. doi: 10.3852/12-385

    [49]

    Herrera CM,Canto A,Pozo MI,Bazaga P. Inhospitable sweetness:nectar filtering of pollinator-borne inocula leads to impoverished,phylogenetically clustered yeast communities[J]. Proc Roy Soc B:Biol Sci,2010,277 (1682):747−754.

    [50]

    Bittebiere AK,Vandenkoornhuyse P,Maluenda E,Gareil A,Dheilly A,et al. Past spatial structure of plant communities determines arbuscular mycorrhizal fungal community assembly[J]. J Ecol,2020,108 (2):546−560. doi: 10.1111/1365-2745.13279

    [51]

    Freeland JR. Molecular Eecology[M]. Hoboken: John Wiley & Sons, 2020: 1-364

    [52]

    Rebolleda Gómez M,Ashman TL. Floral organs act as environmental filters and interact with pollinators to structure the yellow monkeyflower (Mimulus guttatus) floral microbiome[J]. Mol Ecol,2019,28 (23):5155−5171. doi: 10.1111/mec.15280

计量
  • 文章访问数:  199
  • HTML全文浏览量:  44
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-13
  • 修回日期:  2022-10-13
  • 网络出版日期:  2023-03-02
  • 刊出日期:  2023-02-27

目录

/

返回文章
返回