Research progress on photosynthetic contribution of non-leaf green organs in plants
-
摘要: 植物光合作用是生物界赖以生存的基础。长期以来,叶片被认为是植物进行光合作用的重要器官。然而在逆境条件下,植物非叶绿色器官的光合贡献也具有巨大的潜力。近年来,为了探究植物增产的新途径,科研工作者纷纷把目光投向了植物非叶绿色器官。本文简述了植物非叶绿色器官中能够进行光合作用的器官类型、非叶绿色器官光合贡献率及其光合贡献率的测量方法。通过探究不同类型非叶绿色器官光合贡献的差异,比较不同光合贡献率的测量方法,旨在为探索提高非叶绿色器官光合性能的途径提供参考。Abstract: Plant photosynthesis is the basis for the survival of the biological world. Leaves have traditionally been considered as the main organs for photosynthesis in plants. However, the photosynthetic contribution of non-leaf green organs shows great potential under adverse conditions. To explore new ways to improve plant production, researchers have recently turned their attention to non-leaf green organs in plants. In this review, the types and photosynthetic contributions of non-leaf green organs as well as photosynthetic measurement methods are introduced. The goal of comparing differences in non-leaf green organ photosynthetic contributions and measurement methods is to provide a reference for improving non-leaf green organ photosynthetic performance.
-
-
[1] Dueker J, Arditti J. Photosynthetic 14CO2 fixation by green cymbidium (Orchidaceae) flowers[J]. Plant Physiol, 1968, 19(1):130-132.
[2] Goh CJ, Arditti J, Avadhani PN. Carbon fixation in orchid aerial roots[J]. New Phytol, 1983, 95(3):367-374.
[3] Harris M, Smith M. Photosynthesis of cotyledons of soybean seedlings[J]. New Phytol, 1986, 104(3):319-329.
[4] Aschan G, Pfanz H. Non-foliar photosynthesis-a strategy of additional carbon acquisition[J]. Flora, 2003, 198(2):81-97.
[5] Sui X, Shan N, Hu L, Zhang C, Yu C, et al. The complex character of photosynthesis in cucumber fruit[J]. Exp Bot, 2017, (7):1625-1637.
[6] Martinez DE, Luquez VM, Bartoli CG, Guiamét JJ. Persistence of photosynthetic components and photochemical efficiency in ears of water-stressed wheat (Triticum aestivum)[J]. Physiol Plant, 2003, 119(4):519-525.
[7] Jia S, Lv J, Jiang S, Liang T, Liu C, Jing Z. Response of wheat ear photosynthesis and photosynthate carbon distribution to water deficit[J]. Photosynthetica, 2015, 53(1):95-109.
[8] 王志敏, 张英华, 张永平, 吴永成. 麦类作物穗器官的光合性能研究进展[J]. 麦类作物学报, 2004, (4):136-139. Wang ZM, Zhang YH, Zhang YP, Wu YC. Research progress on photosynthetic performance of ear organs of wheat crops[J]. Journal of Triticeae Crops, 2004(4):136-139.
[9] Hu L, Zhang Y, Xia H, Fan S, Song J, et al. Photosynthetic characteristics of non-foliar organs in main C3 ce-reals[J]. Physiol Plant, 2019, 166(1):226-239.
[10] Weiss D, Schonfeld M, Halevy AH. Photosynthetic activities in the petunia corolla[J]. Plant Physiol, 1988, 87(3):666-670.
[11] Khoo GH, He J, Hew CS. Photosynthetic utilization of radiant energy by CAM dendrobium flowers[J]. Photosynthetica, 1998, 34(3):367-376.
[12] Wang H, Hou L, Wang M, Mao P. Contribution of the pod wall to seed grain filling in alfalfa[J]. Sci Rep, 2016, 6:1-7.
[13] Zhang F, Murphy M, Cardoso AA, Jordan GJ, Brodribb TJ. Similar geometric rules govern the distribution of veins and stomata in petals, sepals and leaves[J]. New Phytol, 2018, 219(4):1224-1234.
[14] 稻永忍, 玖村敦彦, 村田吉男, 罗鹏涛. 关于油菜的物质生产的研究——角果的光合作用、呼吸作用及碳素代谢[J]. 中国油料, 1981, 4(3):76-80. Dao YR, Jiu CY, Cun TJ, Luo PT. Studies on the material production of rape:photosynthesis, espiration and carbon metabolism of pod[J]. Oil Crop Science, 1981, 4(3):76-80.
[15] 章建新, 薛丽华, 李金霞. 麦业丰化控对大豆鼓粒期非叶光合器官与粒重关系的影响[J]. 大豆科学, 2008(1):74-78. Zhang JX, Xue LH, Li JX. Effect of Maiyefeng chemical control on the relationship between non-leaf photosynthetic organs and seed weight of soybean at seed filling stage[J]. Soybean Science, 2008(1):74-78.
[16] 王春丽, 海江波, 田建华, 杨建利, 赵晓光. 油菜终花后角果和叶片光合对籽粒产量和品质的影响[J]. 西北植物学报, 2014, 34(8):1620-1626. Wang CL, Hai JB, Tian JH, Yang JL, Zhao XG. Effects of pod and leaf photosynthesis on grain yield and quality of rapeseed after final flowering[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(8):1620-1626.
[17] Araus JL, Brown HR, Febrero A, Bort J, Serret MD. Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum wheat[J]. Plant Cell Environ, 1993, 16(4):383-392.
[18] Maydup ML, Antonietta M, Graciano C, Guiamet JJ, Tambussi EA. The contribution of the awns of bread wheat (Triticum aestivum L.) to grain filling:Responses to water deficit and the effects of awns on ear temperature and hydraulic conductance[J]. Field Crop Res, 2014, 167:102-111.
[19] Wang Y, Xi W, Wang Z, Wang B, Xu X, et al. Contribution of ear photosynthesis to grain yield under rainfed and irrigation conditions for winter wheat cultivars released in the past 30 years in North China Plain[J]. J Integr Agric, 2016, 15(10):2247-2256.
[20] Birkhold KT, Koch KE, Darnell RL. Carbon and nitrogen economy of developing rabbiteye blueberry fruit[J]. J Am Soc Hortic Sci, 1992, 61(2):161-168.
[21] Hetherington SE, Smillie RM, Davies WJ. Photosynthetic activities of vegetative and fruiting tissues of tomato[J]. J Exp Bot, 1998, 49(324):1173-1181.
[22] Allen JF, Holmes NG. Electron transport and redox titration[M]. Washington:IRL Press, 1986:103-141.
[23] 沈天民. 小麦植株器官光合作用与籽粒产量的研究[J]. 种子, 1991, 4(4):8-11. Shen TM. Studies on Photosynthesis of plant organs and grain yield of wheat[J]. Seed, 1991, 4(4):8-11.
[24] Maydup ML, Antonietta M, Guiamet JJ, Graciano C, Lopez JR, Tambussi EA. The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum L.)[J]. Field Crop Res, 2010, 119(1):48-58.
[25] Sanchez-Bragado R, Molero G, Reynolds MP, Araus JL. Relative contribution of shoot and ear photosynthesis to grain filling in wheat under good agronomical conditions assessed by differential organ δ13C[J]. J Exp Bot, 2014, 65(18):5401-5413.
[26] Sanchez-Bragado R, Vicente R, Molero G, Serret MD, Maydup ML, Araus JL. New avenues for increasing yield and stability in C3 cereals:exploring ear photosynthesis[J]. Curr Opin Plant Biol, 2020, 56(1):223-234.
[27] Yonemori K, Itai A, Nakano R, Sugiura A. Role of calyx lobes in gas exchange and development of persimmon fruit[J]. J Am Soc Hortic Sci, 1996, 121(4):676-679.
[28] Aschan G, Pfanz H, Vodnik D, Batic F. Photosynthetic performance of vegetative and reproductive structures of green hellebore (Helleborus viridis L. agg.)[J]. Photosynthetica, 2005, 43(1):55-64.
[29] Clement C, Mischler P, Burrus M, Audran J. Characteristics of the photosynthetic apparatus and CO2-fixation in the flower bud of Lilium.Ⅱ. Anther[J]. Int J Plant Sci, 1997, 158(6):801-810.
[30] Dogane Y, Ando T. An estimation of carbon evolution du-ring flowering and capsule development in a Laeliocattleya orchid[J]. Sci Hort, 1990, 42(4):339-349.
[31] Li X, Wang H, Li H, Zhang L, Teng N, et al. Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticum aestivum)[J]. Physiol Plant, 2006, 127(4):701-709.
[32] Werk KS, Ehleringer JR. Photosynthesis by flowers in Encelia farinosa and Encelia californica (Asteraceae)[J]. Oecologia, 1983, 57(3):311-315.
[33] Henry RJ, Furtado A, Rangan P. Pathways of photosynthesis in non-leaf tissues[J]. Biol, 2020, 9(12):438.
[34] Lytovchenko A, Eickmeier I, Pons C, Osorio S, Szecowka M, et al. Tomato fruit photosynthesis is seemingly unimportant in primary metabolism and ripening but plays a considerable role in seed development[J]. Plant Physiol, 2011, 157(4):1650-1663.
[35] Rangan P, Furtado A, Henry RJ. New evidence for grain specific C4 photosynthesis in wheat[J]. Sci Rep, 2016, 6:1-12.
[36] Kalachanis D, Manetas Y. Analysis of fast chlorophyll fluorescence rise(O-K-J-I-P) curves in green fruits indicates electron flow limitations at the donor side of PSⅡ and the acceptor sides of both photosystems[J]. Physiol Plant, 2010, 139(3):313-323.
[37] 胡渊渊. 棉花非叶绿色器官光合特性及对水分亏缺的适应机制[D]. 石河子:石河子大学. 2013:11-21. [38] Blanke MM, Lenz F. Fruit photosynthesis[J]. Plant Cell Environ, 2010, 12(1):31-46.
[39] Bean RC, Porter GG, Barr BK. Photosynthesis and respiration in developing fruits.Ⅲ. Variations in photosynthetic capacities during color change in citrus[J]. Plant Physiol, 1963, 38(3):285-290.
[40] Smolikova G, Kreslavski V, Shiroglazova O, Bilova T, Sharova E, et al. Photochemical activity changes accompanying the embryogenesis of pea (Pisum sativum) with yellow and green cotyledons[J]. Funct Plant Biol, 2017, 45(2):228-235.
[41] Furbank RT, White R, Palta JA, Turner NC. Internal recycling of respiratory CO2 in pods of chickpea (Cicer arietinum L.):the role of pod wall, seed coat, and embryo[J]. J Exp Bot, 2004, 55(403):1687-1696.
[42] Meyer AO, Kelly GJ, Latzko E. Pyruvate or thophosphate dikinase of immature wheat grains[J]. Plant Sci Lett, 1978, 12(1):35-40.
[43] Ziegler-Jöns A. Gas exchange of ears of cereals in response to carbon dioxide and light:Ⅰ. Relative contributions of parts of the ears of wheat, oat, and barley to the gas exchange of the whole organ[J]. Planta, 1989, 178(1):84-91.
[44] Yoshida S. Physiological aspects of grain yield[J]. Annu Rev Plant Physiol, 1972, 23(1):437-464.
[45] Wang ZM, Wei AL, Zheng DM. Photosynthetic characte-ristics of non-leaf organs of winter wheat cultivars differing in ear type and their relationship with grain mass per ear[J]. Photosynthetica, 2001, 39(2):239-244.
[46] Li X, Du B, Wang H. Awn anatomy of common wheat (Triticum aestivum L.) and its relatives[J]. Caryologia, 2010, 63(4):391-397.
[47] Olugbemi LB, Bingham J, Austin RB. Ear and flag leaf photosynthesis of awned and awnless Triticum species[J]. Ann Appl Biol, 1976, 84(2):231-240.
[48] Rebetzke GJ, Bonnett DG, Reynolds MP. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat[J]. J Exp Bot, 2016, 67(9):2573-2586.
[49] Motzo R, Giunta F. Awnedness affects grain yield and kernel weight in near-isogenic lines of durum wheat[J]. Crop Pasture Sci, 2002, 53(12):1285-1293.
[50] Tambussi EA, S Nogués, Araus JL. Ear of durum wheat under water stress:water relations and photosynthetic metabolism[J]. Planta, 2005, 221(3):446-458.
[51] Tambussi EA, Bort J, Guiamet JJ, Nogués S, Araus JL. The photosynthetic role of ears in C3 cereals:metabolism, water use efficiency and contribution to grain yield[J]. CRC Crit Rev Plant Sci, 2007, 26(1):1-16.
[52] Bremner PM, Rawson HM. Fixation of 14CO2 by flowering and non-flowering glumes of the wheat ear, and the pattern of transport of label to individual grains[J]. Austr J Biol Sci, 1972, 25(5):921-930.
[53] Lu Q, Lu C. Photosynthetic pigment composition and photosystemⅡ photochemistry of wheat ears[J]. Plant Phy-siol Biochem, 2004, 42(5):395-402.
[54] Singal HB, Singh SR. In vitro enzyme activities and pro-ducts of 14CO2 assimilation in flag leaf and ear parts of wheat (Triticum aestivum L.)[J]. Photosynth Res, 1986, 8(2):113-122.
[55] Hibberd JM, Quick WP. Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants[J]. Nature, 2002, 415(6870):451-454.
[56] Saveyn AN, Steppe K, Ubierna N, Dawson TE. Woody tissue photosynthesis and its contribution to trunk growth and bud development in young plants[J]. Plant Cell Environment, 2010, 33(11):1949-1958.
[57] Kharouk VI, Middleton EM, Spencer SL, Williams DL. Aspen bark photosynthesis and its significance to remote sensing and carbon budget estimates in the boreal ecosystem[J]. Water Air Soil Poll, 1995, 82(1-2):483-497.
[58] Wittmann C, Aschan G, Pfanz H. Leaf and twig photosynthesis of young beech (Fagus sylvatica) and aspen (Populus tremula) trees grown under different light regime[J]. Basic Appl Ecol, 2001, 2(2):145-154.
[59] Osamu U, Yuhei F. Structure and photosynthetic metabolism in green prop roots of C4 sorghum[J]. Plant Prod Sci, 2020, 23(2):1-9.
[60] Kitaya Y, Yabuki K, Kiyota M, Tani A, Hirano T, Aiga I. Gas exchange and oxygen concentration in pneumatophores and prop roots of four mangrove species[J]. Trees-Struct Funct, 2002, 16(2):155-158.
[61] Sanchez-Bragado R, Molero G, Reynolds MP, Araus JL. Photosynthetic contribution of the ear to grain filling in wheat:A comparison of different methodologies for evalua-tion[J]. J Exp Bot, 2016, 67(9):2787-2798.
[62] Marcelis FM, Hofman-euer LRB. The contribution of fruit photosynthesis to the carbon requirement of cucumber fruits as affected by irradiance, temperature and ontogeny[J]. Physio Plant, 1995, 93(3):476-483.
[63] 李云霞. 杂交水稻制种群体不同绿色光合器官的光合特性差异研究[D]. 长沙:湖南农业大学, 2014:26. [64] Salopek-Sondi B, Kovac M, Ljubešic N, Magnus V. Fruit initiation in Helleborus niger L. Triggers chloroplast formation and photosynthesis in the perianth[J]. J Plant Physiol, 2000, 157(4):357-364.
[65] Maxine A, Watson B, Casper B. Morphogenetic constraints on patterns of carbon distribution in plants[J]. Ann Rev Ecol Evol Syst, 1984, 15(1):233-258.
[66] Evans L, Rawson H. Photosynthesis and respiration by the flag leaf and components of the ear during grain development in wheat[J]. Aust J Biol Sci, 1970, 23(2):245-254.
[67] Vaillant-Gaveau N, Maillard P, Wojnarowiez G, Gross P, Clement C, Fontaine F. Inflorescence of grapevine (Vitis vinifera L.):a high ability to distribute its own assimilates[J]. J Exp Bot, 2011, 62(12):4183-4190.
[68] 吴志聪, 张志云, 安福全. 大豆非叶片光合器官——豆荚叶绿素含量比较[J]. 现代园艺, 2009(11):60-61. Wu ZC, Zhang ZY, An FQ. Comparison of chlorophyll content in pod, a non-leaf photosynthetic organ of soybean[J]. Modern Horticulture, 2009(11):60-61.
[69] Hiratsuka S, Suzuki M, Nishimura H, Nada K. Fruit photosynthesis in Satsuma mandarin[J]. Plant Sci, 2015, 241:65-69.
[70] 李卫华, 戈巧英, 郝乃斌. 大豆非叶器官——豆荚的光合特性研究[C]. 全国植物光合作用、光生物学及其相关的分子生物学学术研讨会论文摘要汇编, 2001:55. Li WH, Ge QY, Hao NB. Study on Photosynthetic Characteristics of soybean non leaf organ pod[C]. Abstracts of national symposium on plant photosynthesis, photobiology and related molecular biology, 2001:55. [71] 苍晶, 王学东, 崔琳, 郝再彬, 闵丽. 大豆豆荚与叶片的光合特性比较[J]. 中国农学通报, 2005(2):85-87. Cang J, Wang XD, Cui L, Hao ZB, Min L. Comparison of photosynthetic characteristics between soybean pods and leaves[J]. Chinese Agricultural Science Bulletin, 2005(2):85-87.
[72] 刘洪梅, 李英, 卜贵军, 吕薇, 崔琳, 等. 大豆豆荚光合物质转运与分配对籽粒发育的影响[J]. 核农学报, 2008, 22(4):519-523. Liu HM, Li Y, Bu GJ, Lü W, Cui L, et al. Effects of Photosynthate transport and distribution in soybean pods on seed development[J]. Journal of Nuclear Agricultural Sciences, 2008, 22(4):519-523.
[73] 杨阳, 苍晶, 王学东, 崔琳, 王兴, 周子珊. 大豆豆荚光合特性及其对产量的贡献[J]. 东北农业大学学报, 2008, 39(12):51-56. Yang Y, Cang J, Wang XD, Cui L, Wang X, Zhou ZS. Photosynthetic characteristics of soybean pod and its contribution to yield[J]. Journal of Northeast Agricultural University, 2008, 39(12):51-56.
[74] 薛丽华. 大豆豆荚与籽粒生长的关系研究[D]. 乌鲁木齐:新疆农业大学, 2007:10. [75] Zhang W, Mao P, Li Y, Wang M, Xia F, Wang H. Assessing of the contributions of pod photosynthesis to carbon acquisition of seed in alfalfa (Medicago sativa L.)[J]. Sci Rep, 2017, 7:1-13.
[76] 赵懿. 油菜光合功能衰退研究[D]. 北京:中国农业科学院. 2006:10. [77] 张耀文, 赵小光, 关周博, 王学芳, 侯君利, 等. 油菜角果光合特性研究现状及改良思路[J]. 中国油料作物学报, 2017, 39(5):704-713. Zhang YW, Zhao XG, Guan ZB, Wang XF, Hou JH, et al. Research status and improvement ideas of photosynthetic characteristics of rape pod[J]. Chinese Journal of Oil Crop Science, 2017, 39(5):704-713.
[78] 李俊, 袁金展, 官春云, 马霓, 谭大龙, 等. 油菜角果光合衰退的生理特征初步研究[J]. 中国油料作物学报, 2013, 35(6):644-649. Li J, Yuan JZ, Guan CY, Ma N, Tan DL, et al. A preliminary study on the physiological characteristics of photosynthetic decline of rape pod[J]. Chinese Journal of Oil Crop Science, 2013, 35(6):644-649.
[79] Jennings VM, Shibles RM. Genotypic differences in photosynthetic contributions of plant parts to grain yield in oats[J]. Crop Sci, 1968, 8(2):173-175.
[80] 任鹏. 水分胁迫对燕麦穗叶生理特性与产量形成的影响[D]. 呼和浩特:内蒙古农业大学, 2014:39. [81] Raven JA, Griffiths H. Photosynthesis in reproductive structures:Costs and benefits[J]. J Exp Bot, 2015, 66(7):1699-1705.
[82] Maydup ML, Antonietta M, Guiamet JJ, Tambussi EA. The contribution of green parts of the ear to grain filling in old and modern cultivars of bread wheat (Triticum aestivum L.):evidence for genetic gains over the past century[J]. Field Crop Res, 2012, 134:208-215.
[83] Tanaka A, Fujita K, Kikuchi K. Nutrio-physiological studies on the tomato plant.Ⅲ. Photosynthetic rate of individual leaves in relation to the dry matter production of plants[J]. Soil Sci Plant Nutr, 1974, 20(2):173-183.
[84] Pavel EW, DeJong TM. Seasonal CO2 exchange patterns of developing peach (Prunus persica) fruits in response to temperature, light and CO2 concentration[J]. Physiol Plant, 2006, 88(2):322-330.
[85] Cannell MGR. Physiology of the coffee crop[J]. Coffee, 1985:108-134.
[86] 陈俊伟, 张上隆, 张良诚, 徐昌杰, 陈昆松.柑橘果实遮光处理对发育中的果实光合产物分配、糖代谢与积累的影响[J]. 植物生理学报, 2001, 4(6):499-504. Chen JW, Zhang SL, Zhang LC, Xu CJ, Chen KS. Effects of shading on distribution of photosynthetic pro-ducts, sugar metabolism and accumulation in developing citrus fruits[J]. Plant Physiological Journal, 2001, 4(6):499-504.
[87] Jensen KF. Oxygen and carbon dioxide concentrations in sound and decaying red oak trees[J]. For Sci, 1969, 15(3):246-251.
[88] Rivera-Amado C, Trujillo-Negrellos E, Molero G, Rey-nolds MP, Sylvester-Bradley R, Foulkes MJ. Optimizing dry-matter partitioning for increased spike growth, grain number and harvest index in spring wheat[J]. Field Crop Res, 2019, 240:154-167.
[89] Sma-Air S, Ritchie RJ. Photosynthesis in a vanda sp orchid with photosynthetic roots[J]. J Plant Physiol, 2020, 251:1-8.
[90] 张韵, 刘涛, 张涛, 谢乐添, 黄坚钦, 等. 薄壳山核桃果实假果皮的光合特性[J]. 林业科学, 2019, 55(10):10-18. Zhang Y, Liu T, Zhang T, Xie LT, Huang JQ, et al. Photosynthetic characteristics of pericarp of Carya illinoensis[J]. Scientia Silvae Sinicae, 2019, 55(10):10-18.
[91] 张永玲. 香榧假种皮光合特性及其对种子干物质积累的影响[D]. 杭州:浙江农林大学. 2017:23. [92] Hew CS, Ng YW, Wong SC, Yeoh HH, Ho KK. Carbon dioxide fixation in orchid aerial roots[J]. Physiol Plant, 1984, 60(2):154-158.
[93] Chang T, Song Q, Zhao H, Chang S, Xin C, et al. An in situ approach to characterizing photosynthetic gas exchange of rice panicle[J]. Plant Methods, 2020, 16(1):1-14.
-
期刊类型引用(9)
1. 王珺瑶,李艳艳,郑祥源,张志铭,钱建强,赵勇. 施氮下接种丛枝菌根真菌对太行山南麓典型灌木荆条生长性状的影响. 内蒙古大学学报(自然科学版). 2024(01): 74-81 . 百度学术
2. 林玲,张孟文,陈飞飞,黄川腾,董晓娜,陈琳. 国家二级保护植物降香黄檀繁育技术研究进展. 山西农业大学学报(自然科学版). 2024(02): 1-9 . 百度学术
3. 李大东,王海波,杨帆,苗灵凤,张娟,郭璐瑶,向丽珊. 富营养化水体水淹和水淹后干旱对降香黄檀生理生态的影响. 热带亚热带植物学报. 2024(05): 651-659 . 百度学术
4. 杜旭龙,蔡世锋,罗素珍,刘源豪,裴蕴,黄锦学,杨智杰,熊德成. 增温对林木生物量及其分配特征影响的研究进展. 生态学杂志. 2024(10): 3180-3190 . 百度学术
5. 李昀奕,郑矜,严晓艳,李霜,罗林,童晋,赵春章. 云杉和华西箭竹叶际与根际细菌群落对增温的响应. 植物生态学报. 2024(12): 1692-1707 . 百度学术
6. 于鑫磊,苑俊风,刘冬伟,陈金辉,闫巧玲. 野外土壤增温对胡桃楸幼苗生长和生理特性的影响. 应用生态学报. 2023(01): 11-17 . 百度学术
7. 易红芳. 不同施氮水平对云杉幼苗生长及生理特性的影响. 乡村科技. 2023(08): 145-147 . 百度学术
8. 李丽君,苗灵凤,李大东,杨帆. 干旱、施氮对降香黄檀-橡胶树幼苗生长和叶绿素荧光特性的影响. 植物科学学报. 2023(03): 358-369 . 本站查看
9. 姬建波,何禾,宋晓伟,谢晓蓉,杨宗德. 臭氧胁迫对两种榕树幼苗BVOCs释放的短期影响. 热带生物学报. 2023(06): 602-613 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 376
- HTML全文浏览量: 3
- PDF下载量: 293
- 被引次数: 13