Community niche characteristics and interspecific associations of critically endangered species, Vitis baihuashanensis M. S. Kang et D. Z. Lu
-
摘要: 以北京市Ⅱ级重点保护野生植物百花山葡萄(Vitis baihuashanensis M.S.Kang et D.Z.Lu)为研究对象,通过对其野生个体所在群落和人工扩繁个体所在群落进行样方调查,定量分析百花山葡萄自然群落的生态位特征和种间联结关系,对比人工群落的相关情况,探讨其濒危原因。结果显示:百花山葡萄自然群落总体呈正相关,物种正负关联比小于1,仍在向稳定群落发育;由于高大乔木和上层优势灌木截获了大量光照,以及高生态位重叠物种小花溲疏(Deutzia parviflora Bge.)、牛叠肚(Rubus crataegifolius Bge.)、短尾铁线莲(Clematis brevicaudata DC.)、五味子(Schisandra chinensis(Turcz.) Baill.)对各类资源的夺取,使百花山葡萄的营养生长受到明显限制。人工群落总体呈正相关,主要物种正负关联比大于1,目前处于相对较稳定状态;该群落缺乏高大乔木,光照充足,百花山葡萄与圆柏(Sabina chinensis(L.) Ant.)幼树等优势灌木呈不显著正相关,所受竞争压力相对较小,植株已进入生殖生长阶段。建议加强对百花山葡萄自然群落的人工抚育,适当疏枝、疏灌、疏藤,提高和改善百花山葡萄的光照条件,降低其他物种的资源竞争力度,以提高其在群落内的竞争能力,提升物种保护成效。Abstract: During the Anthropocene, the Earth’s ecological environment has experienced dramatic changes. With the global biodiversity crisis continuing to intensify, urgent actions are required to protect endangered species and maintain diversity. Grape species Vitis baihuashanensis M. S. Kang et D. Z. Lu is a grade Ⅱ key protected wild plant in Beijing with only two wild individuals. In this study, we conducted a quadrat survey of its natural and artificial communities, quantitatively analyzed the niche characteristics and interspecific associations of the natural community, and compared the natural and artificial community situations to determine the causes of endangerment from an ecological perspective. Based on analysis, the natural community shows positive associations and a positive-negative correlation ratio of less than one, indicating that the community is still developing towards stability. Vegetative growth of Vitis baihuashanensis is greatly limited, not only because the superior arbor and shrub layers intercept considerable light, but also because species with high niche overlap, such as Deutzia parviflora Bge., Rubus crataegifolius Bge., Clematis brevicaudata DC., and Schisandra chinensis (Turcz.) Baill., out-compete for various resources. In contrast, based on the general positive associations and positive-negative correlation ratio greater than one, the artificial community is currently stable which lacks of tall trees and has availability of sufficient light. In addition, Vitis baihuashanensis has non-significant positive correlation with dominant shrubs, such as Sabina chinensis (L.) Ant., and thus competition pressure is relatively small, allowing the plant to achieve reproductive growth. Thus, it is suggested that artificial management of the natural community should be strengthened, including reducing shrub and vine coverage, improving light conditions, and decreasing resource competition with other species to enhance the competitive ability of this species.
-
-
[1] Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth[J]. PNAS, 2018, 115(25):6506-6511.
[2] Vellend M, Baeten L, Becker-Scarpitta A, Boucher-Lalonde V, McCune JL, Messier J, et al. Plant biodiversity change across scales during The Anthropocene[J]. Annu Rev Plant Biol, 2017, 68(1):563-586.
[3] IUCN. IUCN Red List of Threatened species[EB/OL].[2019-07-18]. https://www.iucnredlist.org/search/stats?redListCategory=lc.
[4] Säterberg T, Sellman S, Ebenman B. High frequency of functional extinctions in ecological networks[J]. Nature, 2013, 499(7459):468-470.
[5] Liu J, Diamond J. China's environment in a globalizing world[J]. Nature, 2005, 435(7046):1179.
[6] Sang WG, Ma KP, Axmacher JC. Securing a future for China's wild plant resources[J]. Bioscience, 2011, 61(9):720-725.
[7] Scheele BC, Foster CN, Banks SC, Lindenmayer DB. Niche contractions in declining species:mechanisms and consequences[J]. Trends Ecol Evol, 2017, 32(5):346.
[8] Sánchez-González A, López-Mata L. Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada, Mexico[J]. Divers Distrib, 2005, 11(6):567-575.
[9] 徐满厚, 刘敏, 翟大彤, 刘彤. 植物种间联结研究内容与方法评述[J]. 生态学报, 2016, 36(24):8224-8233. Xu MH, Liu M, Zhai DT, Liu T. A review of contents and methods used to analyze various aspects of plant interspecific associations[J]. Acta Ecologica Sinica, 2016, 36(24):8224-8233.
[10] 刘艳, 郑越月, 敖艳艳. 不同生长基质的苔藓植物优势种生态位与种间联结[J]. 生态学报, 2019, 39(1):286-293. Liu Y, Zheng YY, Ao YY. Niche and interspecific association of dominant bryophytes on different substrates[J]. Acta Ecologica Sinica, 2019, 39(1):286-293.
[11] This P, Lacombe T, Thomas MR. Historical origins and genetic diversity of wine grapes[J]. Trends Genet, 2006, 22(9):511-519.
[12] Liu CH, Fan XC, Jiang JF, Guo DL, Sun HS, Zhang Y, et al. Genetic diversity of Chinese wild grape species by SSR and SRAP markers[J]. Biotechnol Biotec Eq, 2012, 26(2):2899-2903.
[13] Liang ZC, Duan SC, Sheng J, Zhu SS, Ni XM, Shao JH, et al. Whole-genome resequencing of 472Vitis accessions for grapevine diversity and demographic history analyses[J]. Nat Commun, 2019, 10(1):1190.
[14] 康木生, 路端正. 北京葡萄属一新种[J]. 植物分类学报, 1993, 31(1):70-71. Kang MS, Lu DZ. A new species of Vitis from Beijing[J]. Acta Phytotaxonomica Sinica, 1993, 31(1):70-71.
[15] 路端正, 梁红平. 北京葡萄属植物研究[J]. 北京农学院学报, 1994, 9(1):78-81. Lu DZ, Liang HP. The study of Vitis in Beijing[J]. Journal of Beijing Agricultural College, 1994, 9(1):78-81.
[16] Mu XY, Shen XL, Wu YM, Zhu YX, Dong SB, Xia XF, et al. Plastid phylogenomic study of grape species and its implications for evolutionary study and conservation of Vitis[J]. Phytotaxa, 2018, 364(1):71-80.
[17] 张博雅. 自然保护区生态旅游资源分类与评价[D]. 北京:北京林业大学, 2016. [18] 张晓秋. 松山自然保护区生物多样性使用价值评估[D]. 北京:中国林业科学研究院, 2004. [19] 江焕, 张辉, 龙文兴, 方燕山, 符明期, 朱孔新. 金钟藤入侵群落的种间联结及生态位特征[J]. 生物多样性, 2019, 27(4):388-399. Jiang H, Zhang H, Long WX, Fang YQ, Fu MQ, Zhu KX. Interspecific associations and niche characteristics of communities invaded by Decalobanthus boisianus[J]. Biodiversity Science, 2019, 27(4):388-399.
[20] 李德志, 石强, 臧润国, 王绪平, 盛丽娟, 朱志玲, 王长爱. 物种或种群生态位宽度与生态位重叠的计测模型[J]. 林业科学, 2006, 42(7):95-103. Li DZ, Shi Q, Zang RG, Wang XP, Sheng LJ, Zhu ZL, Wang CA. Model for niche breadth and niche overlap of species or populations[J]. Scientia Silvae Sinicae, 2006, 42(7):95-103.
[21] 陈玉凯, 杨琦, 莫燕妮, 杨小波, 李东海, 洪小江. 海南岛霸王岭国家重点保护植物的生态位研究[J]. 植物生态学报, 2014, 38(6):576-584. Chen YK, Yang Q, Mo YN, Yang XB, Li DH, Hong XJ. A study on the niches of the state's key protected plants in Bawangling, Hainan Island[J]. Chinese Journal of Plant Ecology, 2014, 38(6):576-584.
[22] Su SJ, Liu JF, He ZS, Zheng SQ, Hong W, Xu DW. Ecological species groups and interspecific association of dominant tree species in Daiyun Mountain National Nature Reserve[J]. J Mt Sci-Engl, 2015, 12(3):637-646.
[23] Guisan A, Thuiller W. Predicting species distribution:offering more than simple habitat models[J]. Ecol Lett, 2005, 8(9):993-1009.
[24] Scherrer D, Guisan A. Ecological indicator values reveal missing predictors of species distributions[J]. Sci Rep-UK, 2019, 9(1):3061.
[25] 宾宇波, 沙海峰, 任建武, 白琪芳. 百花山葡萄组织培养和快速繁殖[J]. 西北林学院学报, 2013, 28(6):99-102. Bing YB, Sha HF, Ren JW, Bai QF. Tissue culture and rapid propagation of Vitis amurensis Rupr. var. dissect[J]. Journal of Northwest Forestry University, 2013, 28(6):99-102.
-
期刊类型引用(21)
1. 李琨,胡兆贵,张茂付,甘燕玲,李苏春,刘芳,林海萍. 巾子峰国家森林公园常绿阔叶林木本植物优势种的生态位和种间联结性. 浙江农林大学学报. 2025(01): 45-54 . 百度学术
2. 卢燕,吴万平,曾勇. 天山北麓绿洲荒漠过渡带优势植物的生态位特征与种间联结. 中国沙漠. 2024(02): 254-263 . 百度学术
3. 阮枰臻,王斌,钟艺倩,罗婷,刘晟源,陆茂新,陶旺兰,陆芳,李冬兴,李先琨. 淡黄金花茶伴生群落优势乔灌木的种间联结及群落稳定性分析. 植物科学学报. 2024(02): 170-180 . 本站查看
4. 陆鑫,巴乐金,乌兰·吾尚,刘雪冰,夏依达·艾力,巴音达拉. 海拔对塔城地区野果林生态位与种间关联影响. 森林工程. 2024(03): 76-87+100 . 百度学术
5. 陈聪琳,赵常明,刘明伟,徐凯,徐文婷,熊高明,葛结林,邓滢,申国珍,谢宗强. 神农架南坡小叶青冈+曼青冈常绿阔叶林主要木本植物生态位与种间联结. 生态学报. 2024(11): 4889-4903 . 百度学术
6. 姜鹏博,窦啸文,韦新良,罗海豪,汤孟平. 基于树种谱系的林木种间竞争分析. 森林与环境学报. 2024(04): 414-422 . 百度学术
7. 徐琪,李祖婵,杨健雄,谢婉丽,彭正东,玄锦,黄柳菁. 闽江福州河段江心洲优势草本植物生态位、种间联结及其与土壤因子的关系. 东北林业大学学报. 2024(12): 55-66 . 百度学术
8. 吴卫华,吴家森,吴文骁,吕江波,傅国林,张晔华,郑小军,屠娟丽,梅旭东. 珍稀植物浙江安息香群落种间生态位及种间联结. 东北林业大学学报. 2024(12): 46-54 . 百度学术
9. 莫金凤,曾睿楷,周庆,莫其锋,赵倩. 广东鹅凰嶂省级自然保护区圆籽荷所在群落乔木层优势种的生态位及种间联结性. 植物资源与环境学报. 2024(06): 74-82 . 百度学术
10. 李波,赵阳,曹家豪,齐瑞,高本强,尉文,刘婷,王飞,冯宜明. 洮河上游紫果云杉群落主要乔木生态位、种间关系及群落稳定性. 中南林业科技大学学报. 2024(11): 70-77 . 百度学术
11. 刘玉臣. 阔叶红松林群落优势树种生态位和种间联结. 温带林业研究. 2023(02): 36-42 . 百度学术
12. 刘阳,金莹杉,王平玺,王梦,程峥,贾忠奎. 北京小西山3种人工林天然更新群落谱系结构及主要树种种间关联性分析. 植物资源与环境学报. 2023(04): 54-62 . 百度学术
13. 杨龙,严令斌,安明态,徐钦,杨熳,袁冬梅. 基于生态位理论的毛竹-桫椤群丛物种竞争共存机制. 应用生态学报. 2023(08): 2065-2072 . 百度学术
14. 张孟文,钟才荣,吕晓波,方赞山,程成. 海南清澜港海南海桑群落中物种生态位特征和种间联结性. 植物资源与环境学报. 2023(05): 70-77 . 百度学术
15. 高伟,黄茂根,黄石德,吴兴盛,方栋龙,陈爱平. 濒危树种闽桦天然林优势种群生态位特征. 植物科学学报. 2023(05): 613-625 . 本站查看
16. 吴鑫磊,龙婷,徐超,梁艳君,韦健丽敏,李景文. 东北红豆杉不同生境群落种间关联性. 植物科学学报. 2022(01): 31-38 . 本站查看
17. 张乐满,兰波,张东升,刘英杰,张丽红,许文锋,段晨辉,敦静怡,刘正学. 三峡水库涪陵—奉节段消落带优势草本植物生态位与种间联结性研究. 生态学报. 2022(08): 3228-3240 . 百度学术
18. 张零念,朱贵青,杨宽,刘星月,巩合德,郑丽. 滇中云南杨梅灌丛主要木本植物生态位与种间联结. 植物生态学报. 2022(11): 1400-1410 . 百度学术
19. 周梅妹,高纯,苑景淇,王永涛,于忠亮,李成宏,王梅芳,兰雪涵,杜凤国. 山楂海棠种群分布格局与生态位特征. 北华大学学报(自然科学版). 2021(03): 299-307 . 百度学术
20. 胡雪峰,张峰,张彬,史世斌,杨阳,乔荠瑢,赵天启,赵萌莉. 内蒙古7种针茅属植物生态位研究. 草地学报. 2021(12): 2778-2784 . 百度学术
21. 谢春平,刘大伟,南程慧,李浩,黄晨杨,张健. 浙江长兴金钱松群落优势种生态位分析. 植物资源与环境学报. 2020(05): 58-65 . 百度学术
其他类型引用(13)
计量
- 文章访问数: 773
- HTML全文浏览量: 1
- PDF下载量: 690
- 被引次数: 34