Advance Search
CHONG Pei-Fang, TU Peng, LI Hang-Yi, Жигунов Анатолий Васильевич, LI Yi. Relationships between Drought Resistance and Electrical Parameters in Desert Plant Reaumuria soongorica[J]. Plant Science Journal, 2015, 33(3): 369-376. DOI: 10.11913/PSJ.2095-0837.2015.30369
Citation: CHONG Pei-Fang, TU Peng, LI Hang-Yi, Жигунов Анатолий Васильевич, LI Yi. Relationships between Drought Resistance and Electrical Parameters in Desert Plant Reaumuria soongorica[J]. Plant Science Journal, 2015, 33(3): 369-376. DOI: 10.11913/PSJ.2095-0837.2015.30369

Relationships between Drought Resistance and Electrical Parameters in Desert Plant Reaumuria soongorica

More Information
  • Received Date: July 24, 2014
  • Available Online: October 31, 2022
  • Published Date: June 27, 2015
  • Electrical parameters such as resistance in high frequency (r), resistance in low frequency (rl), specific extracellular resistance (re), specific intracellular resistance (ri), value of conductance (G), susceptance (B) and relative permeability of plasma (RPP) and content of proline (Pro) in the stems of desert plant Reaumuria soongorica under drought stress from four provenances (Lanzhou, Zhangye, Jiuquan and Wuwei) were measured. The relationships between these electrical parameters and RPP and Pro were analyzed. Results showed that with increasing drought stress, stem RPP and Pro increased gradually or increased and then decreased. Significant differences existed among the four provenances (P < 0.05) for RPP in the order Lanzhou > Zhangye > Jiuquan > Wuwei and for Pro in the order Wuwei > Jiuquan > Zhangye > Lanzhou. The r of stem decreased gradually, re, ri and G increased at first and then decreased, while rl decreased at first and then increased. The variation of B was complex. The six electrical parameters differed significantly between provenance and drought stress treatments (P < 0.05). Correlation analysis and path analysis showed a significant correlation among ri, re, r, B and RPP, and a significant correlation among ri, re, r, G and Pro. However, RPP and Pro showed significant effects on ri, with path coefficients of 0.938RPP and 0.897Pro, respectively. These results indicated that ri was the best parameter for evaluating the drought resistance of R. soongorica stems and is an effective method for studying adversity stress in desert plants.
  • [1]
    刘家琼, 邱明新, 蒲锦春, 鲁作民. 我国典型超旱生植物——红砂[J]. 植物学报, 1982, 24(5): 485-488.
    [2]
    谭会娟, 李新荣, 赵昕, 刘玉冰. 红砂愈伤组织适应盐胁迫的渗透调节机制研究[J]. 中国沙漠, 2011, 31(5): 1119-1123.
    [3]
    王酉石. 荒漠植物红砂在干旱胁迫和盐胁迫下的渗透调节研究[D]. 兰州: 兰州大学, 2009: 7.
    [4]
    崔大方. 中国琵琶柴属分类、 分布、 生态和形态解剖学的初步研究[J]. 干旱区研究, 1988, 50(1): 65-69.
    [5]
    曾彦军, 王彦荣, 保平, 塔拉腾, 苏勒德. 几种生态因子对红砂和霸王种子萌发与幼苗生长的影响[J]. 草业学报, 2005, 14(5): 24-31.
    [6]
    王孝安. 安西荒漠植物群落和优势种的分布与环境的关系[J]. 植物学报, 1998, 40(11): 1047-1052.
    [7]
    周海燕, 谭会娟, 张志山, 贾晓红, 张景光, 樊恒文. 红砂和珍珠对极端环境的生理响应与调节机制[J]. 中国沙漠, 2012, 32(1): 24-32.
    [8]
    种培芳, 李毅, 苏世平. 红砂3个地理种群的光合特性及其影响因素[J]. 生态学报, 2010, 30(4): 914-922.
    [9]
    种培芳, 苏世平, 李毅. 4个地理种群红砂的抗旱性综合评价[J]. 草业学报, 2011, 20(5): 26-33.
    [10]
    董秀珍. 生物电阻抗技术研究进展[J]. 中国医学物理学杂志, 2004, 21(6): 311-317.
    [11]
    Mancuso S, Nicese FP, Masi E, Azzarello E. Comparing fractal analysis, electrical impedance and electrolyte leakage for the assessment of cold tolerance in Callistemon and Grevillea spp.[J]. J Hortic Sci Biotech, 2004, 79(4): 627-632.
    [12]
    Mancuso S, Rinaldelli E. Response of young mycorrhizal and non-mycorrhizal plants of olive tree (Olea europaea L.) to saline conditions.Ⅱ. Dynamics of electrical impedance parameters of shoots and leaves[J]. Adv Hortic Sci, 1996, 10(3): 135-145.
    [13]
    Mancuso S. Seasonal dynamics of electrical impedance parameters in shoots and leaves relate to rooting ability of olive (Olea europaea) cuttings[J]. Tree Physiol, 1998, 19(2): 95-101.
    [14]
    Fensom DS. On measuring electrical resistance in situ in higher plants[J]. Can J Plant Sci, 1966, 46: 169-175.
    [15]
    张沛生, 韩学孟, 李耀维. 苹果枝条交流电阻变化率与抗旱性关系的研究[J]. 山西农业科学, 1993, 21(3): 66-70.
    [16]
    刘晓红, 王国栋, 张钢. 水分胁迫对小麦品种叶片电阻抗图谱参数的影响[J]. 西北农林大学学报, 2007, 35(2): 210-214.
    [17]
    刘晓红, 王国栋, 张钢. 小麦叶片的电阻抗图谱参数对水分胁迫的响应[J]. 兰州大学学报: 自然科学版, 2007, 43(5): 48-53.
    [18]
    王爱芳, 张钢, 魏士春, 崔同祥. 不同发育时期樟子松的电阻抗参数与抗旱性关系[J]. 生态学报, 2008, 28(11): 5741-5749.
    [19]
    王爱芳. 干旱胁迫下白皮松苗木电阻抗及生理指标的比较研究[D]. 保定: 河北农业大学, 2010: 7.
    [20]
    张军, 赵慧娟, 张钢, 杨敏生. 电阻抗图谱法在刺槐种质资源抗寒性测定中的应用[J]. 植物遗传资源学报, 2009, 10(3): 419-425.
    [21]
    刘易超, 肖建忠, 杨际双. 高温胁迫对菊花电阻抗图谱参数的影响[J]. 植物科学学报, 2012, 30(2): 198-203.
    [22]
    刘晓红, 黄廷林, 王国栋, 张钢. 盐胁迫对小麦叶片电阻抗图谱参数的影响[J]. 浙江大学学报, 2009, 35(5): 564-568.
    [23]
    种培芳, 苏世平, 李毅, 孙兆成. 不同地理种源红砂幼苗对PEG胁迫的生理响应[J]. 草业学报, 2013, 22(1): 183-192.
    [24]
    Repo T, Oksanen E, Vapaavuori E. Effects of elevated concentrations of ozone and carbon dioxide on the electrical impedance of leaves of silver birch (Betula pendula) clones[J]. Tree Physiol, 2004, 24(7): 833-843.
    [25]
    李合生. 植物生理生物实验理论与技术[M]. 北京: 高等教育出版社, 2001: 51-54.
    [26]
    郝再彬, 苍晶, 徐仲. 植物生理实验[M]. 哈尔滨: 哈尔滨大学出版社, 2004: 101-108.
    [27]
    张兆英, 于秀俊. 植物抗盐性评价生理指标的分析[J]. 沧州师范专科学校学报, 2006, 22(4): 51-53.
    [28]
    Dai QL, Chen C, Feng B, Liu TT, Tian X. Effects of different NaCl treatment on the antioxidant enzymes of oilseed rape (Brassica napus L.) seedlings[J]. African J Biotechnol, 2009, 8(20): 5400-5405.
    [29]
    刘玉汇, 张俊莲, 王蒂, 杨宏羽, 王丽.不同烟草品种对卡那霉素抗性及耐盐性的差异[J]. 中国农学通报, 2008, 24(3): 180-185.
    [30]
    马海军. 用电学参数标志苹果采后病害和机械损伤响应机制的研究[D]. 杨凌: 西北农林科技大学, 2010: 7.
  • Related Articles

    [1]Zeng Weiying, Wang Dezhi, Ye Chen, Gong Yu, Wang Yuxi, Zhang Quanfa. Prediction of potential distribution of Cupressus gigantea W. C. Cheng & L. K. Fu in China based on optimized MaxEnt modeling[J]. Plant Science Journal, 2025, 43(1): 52-62. DOI: 10.11913/PSJ.2095-0837.24033
    [2]Guan Junhao, Ye Yanhui, Shao Xiaoming, Wang Ruihong, Jiang Yanbin. Effects of intercropping forage on weed community composition and diversity in an apple orchard in the river valley area of Nyingchi, Tibet[J]. Plant Science Journal, 2024, 42(1): 23-33. DOI: 10.11913/PSJ.2095-0837.23100
    [3]Wang Jun-Wei, Chen Yong-Hao, La Qiong. Diversity, distribution patterns, and floristic characteristics of seed plants endemic to Tibet, China[J]. Plant Science Journal, 2023, 41(5): 594-603. DOI: 10.11913/PSJ.2095-0837.22298
    [4]Liu Yong-Ying, Chai Xiao-Liang, Liao Yu-Jia, Song Xiao-Tong, Shao Xiao-Ming. Bryum marratii Hook. & Wilson (Bryaceae, Musci) reported new to China[J]. Plant Science Journal, 2023, 41(2): 159-165. DOI: 10.11913/PSJ.2095-0837.22155
    [5]Fan Ying-Jie, Liao Yu-Jia, Wang Meng-Zheng, Liu Ling, Song Xiao-Tong, Shao Xiao-Ming. New distribution and distribution prediction of the endemic species Encalypta asiatica J. C. Zhao & L. Li in Tibet, China[J]. Plant Science Journal, 2021, 39(4): 358-366. DOI: 10.11913/PSJ.2095-0837.2021.40358
    [6]Tao Lian, Yang Wen-Yuan, Xie Hong-Jiang, Pan Cui-Ping, Li Yan-Feng, Li Ju, Huan Yun-Min. Quality evaluation of ‘Golden Delicious’ apple from different ecological regions in Tibet and its response to meteorological factors[J]. Plant Science Journal, 2018, 36(1): 86-93. DOI: 10.11913/PSJ.2095-0837.2018.10086
    [7]WANG Wen-Tsai. Delphinium pingwuense, a New Species of Ranunculaceae from Sichuan Province, China[J]. Plant Science Journal, 2015, 33(1): 33-35. DOI: 10.11913/PSJ.2095-0837.2015.10033
    [8]WANG Wen-Tsai. Thalictrum yuexiense, a New Species of Ranunculaceae from Anhui Province, China[J]. Plant Science Journal, 2014, 32(6): 567-569. DOI: 10.11913/PSJ.2095-0837.2014.60567
    [9]WANG Wen-Tsai. Two New Species of Urticaceae from Tibet[J]. Plant Science Journal, 2014, 32(1): 24-26. DOI: 10.3724/SP.J.1142.2014.10024
    [10]WANG Wen-Cai. Aconitum rotundocassideum, a New Species of Ranunculaceae from Shaanxi[J]. Plant Science Journal, 2013, 31(6): 533-535. DOI: 10.3724/SP.J.1142.2013.60533

Catalog

    Article views (1114) PDF downloads (1426) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return